Loading…
Bow shocks, bow waves, and dust waves – II. Beyond the rip point
ABSTRACT Dust waves are a result of gas–grain decoupling in a stream of dusty plasma that flows past a luminous star. The radiation field is sufficiently strong to overcome the collisional coupling between grains and gas at a rip point, where the ratio of radiation pressure to gas pressure exceeds a...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society 2019-07, Vol.486 (3), p.4423-4442 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ABSTRACT
Dust waves are a result of gas–grain decoupling in a stream of dusty plasma that flows past a luminous star. The radiation field is sufficiently strong to overcome the collisional coupling between grains and gas at a rip point, where the ratio of radiation pressure to gas pressure exceeds a critical value of roughly 1000. When the rip point occurs outside the hydrodynamic bow shock, a separate dust wave may form, decoupled from the gas shell, which can either be drag-confined or inertia-confined, depending on the stream density and relative velocity. In the drag-confined case, there is a minimum stream velocity of roughly 60 km s−1 that allows a steady-state stagnant drift solution for the dust wave apex. For lower relative velocities, the dust dynamics close to the axis exhibit a limit cycle behaviour (rip and snap back) between two different radii. Strong coupling of charged grains to the plasma’s magnetic field can modify these effects, but for a quasi-parallel field orientation the results are qualitatively similar to the non-magnetic case. For a quasi-perpendicular field, on the other hand, the formation of a decoupled dust wave is strongly suppressed. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stz1130 |