Loading…
Fluorosensor proteins to detect specific DNA sequences in living bacteria
While there are many hybridization-based DNA sensors, few of them can detect native double-stranded DNA, which is most commonly found in physiological conditions. Here we made novel fluorosensor proteins comprised of a pair of two zinc fingers tethered with an N-terminal dimerization motif and a C-t...
Saved in:
Published in: | Nucleic Acids Symposium Series 2007-11, Vol.51 (1), p.121-122 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | While there are many hybridization-based DNA sensors, few of them can detect native double-stranded DNA, which is most commonly found in physiological conditions. Here we made novel fluorosensor proteins comprised of a pair of two zinc fingers tethered with an N-terminal dimerization motif and a C-terminal yellow fluorescent protein fragment (split eYFP) to detect specific DNA sequence in a living bacteria. When E. coli Top10 cells harboring the plasmid encoding the fusion proteins and a test plasmid encoding target DNA sequence were induced for the protein expression, significant increase in fluorescence was observed, compared with the strain harboring a test plasmid without target DNA sequence. |
---|---|
ISSN: | 0261-3166 1746-8272 |
DOI: | 10.1093/nass/nrm061 |