Loading…

Instantons and Bows for the Classical Groups

Abstract The construction of Atiyah, Drinfeld, Hitchin and Manin provided complete description of all instantons on Euclidean four-space. It was extended by Kronheimer and Nakajima to instantons on ALE spaces, resolutions of orbifolds $\mathbb{R}^4/\Gamma$ by a finite subgroup Γ⊂SU(2). We consider a...

Full description

Saved in:
Bibliographic Details
Published in:Quarterly journal of mathematics 2021-06, Vol.72 (1-2), p.339-386
Main Authors: Cherkis, Sergey A, Hurtubise, Jacques
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The construction of Atiyah, Drinfeld, Hitchin and Manin provided complete description of all instantons on Euclidean four-space. It was extended by Kronheimer and Nakajima to instantons on ALE spaces, resolutions of orbifolds $\mathbb{R}^4/\Gamma$ by a finite subgroup Γ⊂SU(2). We consider a similar classification, in the holomorphic context, of instantons on some of the next spaces in the hierarchy, the ALF multi-Taub-NUT manifolds, showing how they tie in to the bow solutions to Nahm’s equations via the Nahm correspondence. Recently Nakajima and Takayama constructed the Coulomb branch of the moduli space of vacua of a quiver gauge theory, tying them to the same space of bow solutions. One can view our construction as describing the same manifold as the Higgs branch of the mirror gauge theory as described by Cherkis, O’Hara and Saemann. Our construction also yields the monad construction of holomorphic instanton bundles on the multi-Taub-NUT space for any classical compact Lie structure group.
ISSN:0033-5606
1464-3847
DOI:10.1093/qmath/haaa034