Loading…
On the Coincidence between Campanato Functions and Lipschitz Functions: A New Approach via Elliptic PDES
Let $({\mathcal{M}},d,\mu)$ be the metric measure space with a Dirichlet form $\mathscr{E}$. In this paper, we obtain that the Campanato function and the Lipschitz function do always coincide. Our approach is based on the harmonic extension technology, which extends a function u on ${\mathcal{M}}$ t...
Saved in:
Published in: | Quarterly journal of mathematics 2024-06, Vol.75 (2), p.663-693 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let $({\mathcal{M}},d,\mu)$ be the metric measure space with a Dirichlet form $\mathscr{E}$. In this paper, we obtain that the Campanato function and the Lipschitz function do always coincide. Our approach is based on the harmonic extension technology, which extends a function u on ${\mathcal{M}}$ to its Poisson integral Ptu on ${\mathcal{M}}\times\mathbb{R}_+$. With this tool in hand, we can utilize the same Carleson measure condition of the Poisson integral to characterize its Campanato/Lipschitz trace, and hence, they are equivalent to each other. This equivalence was previously obtained by Macías–Segovia [Adv. Math., 1979]. However, we provide a new proof, via the boundary value problem for the elliptic equation. This result indicates the famous saying of Stein–Weiss at the beginning of Chapter II in their book [Princeton Mathematical Series, No. 32, 1971]. |
---|---|
ISSN: | 0033-5606 1464-3847 |
DOI: | 10.1093/qmath/haae019 |