Loading…

Convolutional Neural Network for Transition Modeling Based on Linear Stability Theory

Transition prediction is an important aspect of aerodynamic design because of its impact on skin friction and potential coupling with flow separation characteristics. Traditionally, the modeling of transition has relied on correlation-based empirical formulas based on integral quantities such as the...

Full description

Saved in:
Bibliographic Details
Published in:Physical review fluids 2020-11, Vol.5 (11), Article 113903
Main Authors: Zafar, Muhammad I, Choudhari, Meelan M, Li, Fei, Chang, Chau-Lyan, Paredes, Pedro, Venkatachari, Balaji
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Transition prediction is an important aspect of aerodynamic design because of its impact on skin friction and potential coupling with flow separation characteristics. Traditionally, the modeling of transition has relied on correlation-based empirical formulas based on integral quantities such as the shape factor of the boundary layer. However, in many applications of computational fluid dynamics, the shape factor is not straightforwardly available or not well-defined. We propose using the complete velocity profile along with other quantities (e.g., frequency, Reynolds number) to predict the perturbation amplification factor. While this can be achieved with regression models based on a classical fully connected neural network, such a model can be computationally more demanding. We propose a novel convolutional neural network inspired by the underlying physics as described by the stability equations. Specifically, convolutional layers are first used to extract integral quantities from the velocity profiles, and then fully connected layers are used to map the extracted integral quantities, along with frequency and Reynolds number, to the output (amplification ratio). Numerical tests on classical boundary layers clearly demonstrate the merits of the proposed method. More importantly, we demonstrate that, for Tollmien-Schlichting instabilities in two-dimensional, low-speed boundary layers, the proposed network encodes information in the boundary layer profiles into an integral quantity that is strongly correlated to a well-known, physically defined parameter – the shape factor.
ISSN:2469-990X
2469-990X
DOI:10.1103/PhysRevFluids.5.113903