Loading…

Weibull growth modeling of laser-sintered nylon 12

Purpose - This paper seeks to present the results of an experiment to investigate the effect of six part orientation (XY, XZ, YX, YZ, ZY, ZX) and a wide range of energy densities on ultimate tensile strength (UTS) and elongation of laser-sintered nylon 12 (PA-12) test specimens.Design methodology ap...

Full description

Saved in:
Bibliographic Details
Published in:Rapid prototyping journal 2013-01, Vol.19 (4), p.300-306
Main Authors: Usher, John S, Gornet, Timothy J, Starr, Thomas L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose - This paper seeks to present the results of an experiment to investigate the effect of six part orientation (XY, XZ, YX, YZ, ZY, ZX) and a wide range of energy densities on ultimate tensile strength (UTS) and elongation of laser-sintered nylon 12 (PA-12) test specimens.Design methodology approach - ASTM Type 1 specimens were built on a DTM Sinterstation 2500+ and tensile tested on an Instron 5569 A. The resulting data were fit to non-linear regression models based on the well-known Weibull growth model to predict each response based on the total energy density used in each trial.Findings - The resulting regression models provide excellent fits with low sum of squared errors and normally distributed residuals. The resulting material properties are highly affected by the energy density and the build orientation. However, once sufficient energy density is applied, properties tend to converge to consistent values. To achieve maximum UTS of approximately 52 MPa, it is recommended that values of energy density above 0.25 W-s per mm3 be used. To achieve maximum elongation of approximately 15-16 percent, it is recommended that values of energy density above 0.40 W-s per mm3 be used when building parts in the XY, XZ, YX, YZ orientations. Parts built in the ZX orientation exhibit lower elongation values at or below 12 percent for even high values of energy density.Originality value - This paper extends previous work of Starr, Gornet and Usher on the relationship between material properties, part orientation and energy density by proposing the use of the Weibull growth model. Recommendations are provided to assist users in the selection of correct energy density to achieve desirable mechanical properties in each specified orientation.
ISSN:1355-2546
1758-7670
DOI:10.1108/13552541311323308