Loading…
A pipeline design of a fast prime factor DFT on a finite field
A conventional prime factor discrete Fourier transform (DFT) algorithm of the Winograd type is used to realize a discrete Fourier-like transform on the finite field GF(q/sup /n). A pipeline structure is used to implement this prime-factor DFT over GF(q/sup /n). This algorithm is developed to compute...
Saved in:
Published in: | IEEE transactions on computers 1988-03, Vol.37 (3), p.266-273 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A conventional prime factor discrete Fourier transform (DFT) algorithm of the Winograd type is used to realize a discrete Fourier-like transform on the finite field GF(q/sup /n). A pipeline structure is used to implement this prime-factor DFT over GF(q/sup /n). This algorithm is developed to compute cyclic convolutions of complex numbers and to aid in decoding the Reed-Solomon codes. Such a pipeline fast prime-factor DFT algorithm over GF(q/sup /n) is regular, simple, expandable, and naturally suitable for most implementation technologies. An example illustrating the pipeline aspect of a 30-point transform over GF(q/sup /n) is presented.< > |
---|---|
ISSN: | 0018-9340 1557-9956 |
DOI: | 10.1109/12.2163 |