Loading…

On the quadratic spans of DeBruijn sequences

The quadratic span of a periodic binary sequence is defined to be the length of the shortest quadratic feedback shift register (FSR) that generates it. An algorithm for computing the quadratic span of a binary sequence is described. The required increase in quadratic span is determined for the speci...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory 1990-07, Vol.36 (4), p.822-829
Main Authors: Chan, A.H., Games, R.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The quadratic span of a periodic binary sequence is defined to be the length of the shortest quadratic feedback shift register (FSR) that generates it. An algorithm for computing the quadratic span of a binary sequence is described. The required increase in quadratic span is determined for the special case of when a discrepancy occurs in a linear FSR that generates an initial portion of a sequence. The quadratic spans of binary DeBruijn sequences are investigated. An upper bound for the quadratic span of a DeBruijn sequence of span n is given; this bound is attained by the class of DeBruijn sequences obtained from m-sequences. It is easy to see that a lower bound is n+1, but a lower bound of n+2 is conjectured. The distributions of quadratic spans of DeBruijn sequences of span 3, 4, 5 and 6 are presented.< >
ISSN:0018-9448
1557-9654
DOI:10.1109/18.53741