Loading…
On the quadratic spans of DeBruijn sequences
The quadratic span of a periodic binary sequence is defined to be the length of the shortest quadratic feedback shift register (FSR) that generates it. An algorithm for computing the quadratic span of a binary sequence is described. The required increase in quadratic span is determined for the speci...
Saved in:
Published in: | IEEE transactions on information theory 1990-07, Vol.36 (4), p.822-829 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c303t-8394cc82aba25ce661af33cb0501008a503476c0af560d80725c8750a0e001d93 |
---|---|
cites | cdi_FETCH-LOGICAL-c303t-8394cc82aba25ce661af33cb0501008a503476c0af560d80725c8750a0e001d93 |
container_end_page | 829 |
container_issue | 4 |
container_start_page | 822 |
container_title | IEEE transactions on information theory |
container_volume | 36 |
creator | Chan, A.H. Games, R.A. |
description | The quadratic span of a periodic binary sequence is defined to be the length of the shortest quadratic feedback shift register (FSR) that generates it. An algorithm for computing the quadratic span of a binary sequence is described. The required increase in quadratic span is determined for the special case of when a discrepancy occurs in a linear FSR that generates an initial portion of a sequence. The quadratic spans of binary DeBruijn sequences are investigated. An upper bound for the quadratic span of a DeBruijn sequence of span n is given; this bound is attained by the class of DeBruijn sequences obtained from m-sequences. It is easy to see that a lower bound is n+1, but a lower bound of n+2 is conjectured. The distributions of quadratic spans of DeBruijn sequences of span 3, 4, 5 and 6 are presented.< > |
doi_str_mv | 10.1109/18.53741 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_18_53741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>53741</ieee_id><sourcerecordid>28485318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-8394cc82aba25ce661af33cb0501008a503476c0af560d80725c8750a0e001d93</originalsourceid><addsrcrecordid>eNpF0E1PwzAMBuAIgcQYSFy59YAQBzqcJmnTI4xPadIucI68zBWdunaL2wP_nrBNcLIsP3ptWYhLCRMpobyXdmJUoeWRGEljirTMjT4WIwBp01JreyrOmFex1UZmI3E3b5P-i5LtgMuAfe0T3mDLSVclT_QYhnrVJkzbgVpPfC5OKmyYLg51LD5fnj-mb-ls_vo-fZilXoHqU6tK7b3NcIGZ8ZTnEiul_AIMSACLBpQucg9YmRyWFoqobGEAgeJdy1KNxc0-dxO6uJp7t67ZU9NgS93ALrPaGiVthLd76EPHHKhym1CvMXw7Ce73HU5at3tHpNeHTGSPTRWw9TX_eWN0lkMe2dWe1UT0P91F_AC59mP9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28485318</pqid></control><display><type>article</type><title>On the quadratic spans of DeBruijn sequences</title><source>IEEE Xplore (Online service)</source><creator>Chan, A.H. ; Games, R.A.</creator><creatorcontrib>Chan, A.H. ; Games, R.A.</creatorcontrib><description>The quadratic span of a periodic binary sequence is defined to be the length of the shortest quadratic feedback shift register (FSR) that generates it. An algorithm for computing the quadratic span of a binary sequence is described. The required increase in quadratic span is determined for the special case of when a discrepancy occurs in a linear FSR that generates an initial portion of a sequence. The quadratic spans of binary DeBruijn sequences are investigated. An upper bound for the quadratic span of a DeBruijn sequence of span n is given; this bound is attained by the class of DeBruijn sequences obtained from m-sequences. It is easy to see that a lower bound is n+1, but a lower bound of n+2 is conjectured. The distributions of quadratic spans of DeBruijn sequences of span 3, 4, 5 and 6 are presented.< ></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/18.53741</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Binary sequences ; Circuit testing ; Communication systems ; Costs ; Cryptography ; Exact sciences and technology ; Feedback ; Information theory ; Information, signal and communications theory ; Random sequences ; Shift registers ; Spread spectrum communication ; Telecommunications and information theory</subject><ispartof>IEEE transactions on information theory, 1990-07, Vol.36 (4), p.822-829</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-8394cc82aba25ce661af33cb0501008a503476c0af560d80725c8750a0e001d93</citedby><cites>FETCH-LOGICAL-c303t-8394cc82aba25ce661af33cb0501008a503476c0af560d80725c8750a0e001d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/53741$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5542606$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chan, A.H.</creatorcontrib><creatorcontrib>Games, R.A.</creatorcontrib><title>On the quadratic spans of DeBruijn sequences</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>The quadratic span of a periodic binary sequence is defined to be the length of the shortest quadratic feedback shift register (FSR) that generates it. An algorithm for computing the quadratic span of a binary sequence is described. The required increase in quadratic span is determined for the special case of when a discrepancy occurs in a linear FSR that generates an initial portion of a sequence. The quadratic spans of binary DeBruijn sequences are investigated. An upper bound for the quadratic span of a DeBruijn sequence of span n is given; this bound is attained by the class of DeBruijn sequences obtained from m-sequences. It is easy to see that a lower bound is n+1, but a lower bound of n+2 is conjectured. The distributions of quadratic spans of DeBruijn sequences of span 3, 4, 5 and 6 are presented.< ></description><subject>Applied sciences</subject><subject>Binary sequences</subject><subject>Circuit testing</subject><subject>Communication systems</subject><subject>Costs</subject><subject>Cryptography</subject><subject>Exact sciences and technology</subject><subject>Feedback</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Random sequences</subject><subject>Shift registers</subject><subject>Spread spectrum communication</subject><subject>Telecommunications and information theory</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNpF0E1PwzAMBuAIgcQYSFy59YAQBzqcJmnTI4xPadIucI68zBWdunaL2wP_nrBNcLIsP3ptWYhLCRMpobyXdmJUoeWRGEljirTMjT4WIwBp01JreyrOmFex1UZmI3E3b5P-i5LtgMuAfe0T3mDLSVclT_QYhnrVJkzbgVpPfC5OKmyYLg51LD5fnj-mb-ls_vo-fZilXoHqU6tK7b3NcIGZ8ZTnEiul_AIMSACLBpQucg9YmRyWFoqobGEAgeJdy1KNxc0-dxO6uJp7t67ZU9NgS93ALrPaGiVthLd76EPHHKhym1CvMXw7Ce73HU5at3tHpNeHTGSPTRWw9TX_eWN0lkMe2dWe1UT0P91F_AC59mP9</recordid><startdate>19900701</startdate><enddate>19900701</enddate><creator>Chan, A.H.</creator><creator>Games, R.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19900701</creationdate><title>On the quadratic spans of DeBruijn sequences</title><author>Chan, A.H. ; Games, R.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-8394cc82aba25ce661af33cb0501008a503476c0af560d80725c8750a0e001d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Applied sciences</topic><topic>Binary sequences</topic><topic>Circuit testing</topic><topic>Communication systems</topic><topic>Costs</topic><topic>Cryptography</topic><topic>Exact sciences and technology</topic><topic>Feedback</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Random sequences</topic><topic>Shift registers</topic><topic>Spread spectrum communication</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chan, A.H.</creatorcontrib><creatorcontrib>Games, R.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chan, A.H.</au><au>Games, R.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the quadratic spans of DeBruijn sequences</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>1990-07-01</date><risdate>1990</risdate><volume>36</volume><issue>4</issue><spage>822</spage><epage>829</epage><pages>822-829</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>The quadratic span of a periodic binary sequence is defined to be the length of the shortest quadratic feedback shift register (FSR) that generates it. An algorithm for computing the quadratic span of a binary sequence is described. The required increase in quadratic span is determined for the special case of when a discrepancy occurs in a linear FSR that generates an initial portion of a sequence. The quadratic spans of binary DeBruijn sequences are investigated. An upper bound for the quadratic span of a DeBruijn sequence of span n is given; this bound is attained by the class of DeBruijn sequences obtained from m-sequences. It is easy to see that a lower bound is n+1, but a lower bound of n+2 is conjectured. The distributions of quadratic spans of DeBruijn sequences of span 3, 4, 5 and 6 are presented.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/18.53741</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 1990-07, Vol.36 (4), p.822-829 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_crossref_primary_10_1109_18_53741 |
source | IEEE Xplore (Online service) |
subjects | Applied sciences Binary sequences Circuit testing Communication systems Costs Cryptography Exact sciences and technology Feedback Information theory Information, signal and communications theory Random sequences Shift registers Spread spectrum communication Telecommunications and information theory |
title | On the quadratic spans of DeBruijn sequences |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A53%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20quadratic%20spans%20of%20DeBruijn%20sequences&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Chan,%20A.H.&rft.date=1990-07-01&rft.volume=36&rft.issue=4&rft.spage=822&rft.epage=829&rft.pages=822-829&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/18.53741&rft_dat=%3Cproquest_cross%3E28485318%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c303t-8394cc82aba25ce661af33cb0501008a503476c0af560d80725c8750a0e001d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28485318&rft_id=info:pmid/&rft_ieee_id=53741&rfr_iscdi=true |