Loading…
On quantum detection and the square-root measurement
We consider the problem of constructing measurements optimized to distinguish between a collection of possibly nonorthogonal quantum states. We consider a collection of pure states and seek a positive operator-valued measure (POVM) consisting of rank-one operators with measurement vectors closest in...
Saved in:
Published in: | IEEE transactions on information theory 2001-03, Vol.47 (3), p.858-872 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the problem of constructing measurements optimized to distinguish between a collection of possibly nonorthogonal quantum states. We consider a collection of pure states and seek a positive operator-valued measure (POVM) consisting of rank-one operators with measurement vectors closest in squared norm to the given states. We compare our results to previous measurements suggested by Peres and Wootters (1991) and Hausladen et al. (1996), where we refer to the latter as the square-root measurement (SRM). We obtain a new characterization of the SRM, and prove that it is optimal in a least-squares sense. In addition, we show that for a geometrically uniform state set the SRM minimizes the probability of a detection error. This generalizes a similar result of Ban et al. (see Int. J. Theor. Phys., vol.36, p.1269-88, 1997). |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/18.915636 |