Loading…

On iterative soft-decision decoding of linear binary block codes and product codes

Iterative decoding methods have gained interest, initiated by the results of the so-called "turbo" codes. The theoretical description of this decoding, however, seems to be difficult. Therefore, we study the iterative decoding of block codes. First, we discuss the iterative decoding algori...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal on selected areas in communications 1998-02, Vol.16 (2), p.276-296
Main Authors: Lucas, R., Bossert, M., Breitbach, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Iterative decoding methods have gained interest, initiated by the results of the so-called "turbo" codes. The theoretical description of this decoding, however, seems to be difficult. Therefore, we study the iterative decoding of block codes. First, we discuss the iterative decoding algorithms developed by Gallager (1962), Battail et al. (1979), and Hagenauer et al. (1996). Based on their results, we propose a decoding algorithm which only uses parity check vectors of minimum weight. We give the relation of this iterative decoding to one-step majority-logic decoding, and interpret it as gradient optimization. It is shown that the used parity check set defines the region where the iterative decoding decides on a particular codeword. We make plausible that, in almost all cases, the iterative decoding converges to a codeword after some iterations. We derive a computationally efficient implementation using the minimal trellis representing the used parity check set. Simulations illustrate that our algorithm gives results close to soft decision maximum likelihood (SDML) decoding for many code classes like BCH codes. Reed-Muller codes, quadratic residue codes, double circulant codes, and cyclic finite geometry codes. We also present simulation results for product codes and parallel concatenated codes based on block codes.
ISSN:0733-8716
1558-0008
DOI:10.1109/49.661116