Loading…
On iterative soft-decision decoding of linear binary block codes and product codes
Iterative decoding methods have gained interest, initiated by the results of the so-called "turbo" codes. The theoretical description of this decoding, however, seems to be difficult. Therefore, we study the iterative decoding of block codes. First, we discuss the iterative decoding algori...
Saved in:
Published in: | IEEE journal on selected areas in communications 1998-02, Vol.16 (2), p.276-296 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c277t-e59e6a0d573b60aa614a6d3b0c5393c479e8431b01a5d104498bcdd62a1d4d453 |
---|---|
cites | cdi_FETCH-LOGICAL-c277t-e59e6a0d573b60aa614a6d3b0c5393c479e8431b01a5d104498bcdd62a1d4d453 |
container_end_page | 296 |
container_issue | 2 |
container_start_page | 276 |
container_title | IEEE journal on selected areas in communications |
container_volume | 16 |
creator | Lucas, R. Bossert, M. Breitbach, M. |
description | Iterative decoding methods have gained interest, initiated by the results of the so-called "turbo" codes. The theoretical description of this decoding, however, seems to be difficult. Therefore, we study the iterative decoding of block codes. First, we discuss the iterative decoding algorithms developed by Gallager (1962), Battail et al. (1979), and Hagenauer et al. (1996). Based on their results, we propose a decoding algorithm which only uses parity check vectors of minimum weight. We give the relation of this iterative decoding to one-step majority-logic decoding, and interpret it as gradient optimization. It is shown that the used parity check set defines the region where the iterative decoding decides on a particular codeword. We make plausible that, in almost all cases, the iterative decoding converges to a codeword after some iterations. We derive a computationally efficient implementation using the minimal trellis representing the used parity check set. Simulations illustrate that our algorithm gives results close to soft decision maximum likelihood (SDML) decoding for many code classes like BCH codes. Reed-Muller codes, quadratic residue codes, double circulant codes, and cyclic finite geometry codes. We also present simulation results for product codes and parallel concatenated codes based on block codes. |
doi_str_mv | 10.1109/49.661116 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_49_661116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>661116</ieee_id><sourcerecordid>28491190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-e59e6a0d573b60aa614a6d3b0c5393c479e8431b01a5d104498bcdd62a1d4d453</originalsourceid><addsrcrecordid>eNo9kM1LxDAQxYMoWFcPXj3lJHjoOtOkaXOUxS9YWBA9lzSZSrTbrElX8L-30sXTDPN-vMc8xi4Rloigb6VeKoWI6ohlWJZ1DgD1McugEiKvK1Sn7CylDwCUsi4y9rIZuB8pmtF_E0-hG3NH1icfBj4twfnhnYeO934gE3nrBxN_eNsH-8knlRI3g-O7GNzejvPlnJ10pk90cZgL9vZw_7p6ytebx-fV3Tq3RVWNOZWalAFXVqJVYIxCaZQTLdhSaGFlpamWAltAUzoEKXXdWudUYdBJJ0uxYNez75T-tac0NlufLPW9GSjsU1PUUiNqmMCbGbQxpBSpa3bRb6c_GoTmr7VG6mZubWKvZtYT0T93EH8B67ZnFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28491190</pqid></control><display><type>article</type><title>On iterative soft-decision decoding of linear binary block codes and product codes</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lucas, R. ; Bossert, M. ; Breitbach, M.</creator><creatorcontrib>Lucas, R. ; Bossert, M. ; Breitbach, M.</creatorcontrib><description>Iterative decoding methods have gained interest, initiated by the results of the so-called "turbo" codes. The theoretical description of this decoding, however, seems to be difficult. Therefore, we study the iterative decoding of block codes. First, we discuss the iterative decoding algorithms developed by Gallager (1962), Battail et al. (1979), and Hagenauer et al. (1996). Based on their results, we propose a decoding algorithm which only uses parity check vectors of minimum weight. We give the relation of this iterative decoding to one-step majority-logic decoding, and interpret it as gradient optimization. It is shown that the used parity check set defines the region where the iterative decoding decides on a particular codeword. We make plausible that, in almost all cases, the iterative decoding converges to a codeword after some iterations. We derive a computationally efficient implementation using the minimal trellis representing the used parity check set. Simulations illustrate that our algorithm gives results close to soft decision maximum likelihood (SDML) decoding for many code classes like BCH codes. Reed-Muller codes, quadratic residue codes, double circulant codes, and cyclic finite geometry codes. We also present simulation results for product codes and parallel concatenated codes based on block codes.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/49.661116</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>AWGN ; Block codes ; Computational modeling ; Concatenated codes ; Iterative algorithms ; Iterative decoding ; Maximum likelihood decoding ; Parity check codes ; Product codes ; Solid modeling</subject><ispartof>IEEE journal on selected areas in communications, 1998-02, Vol.16 (2), p.276-296</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-e59e6a0d573b60aa614a6d3b0c5393c479e8431b01a5d104498bcdd62a1d4d453</citedby><cites>FETCH-LOGICAL-c277t-e59e6a0d573b60aa614a6d3b0c5393c479e8431b01a5d104498bcdd62a1d4d453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/661116$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Lucas, R.</creatorcontrib><creatorcontrib>Bossert, M.</creatorcontrib><creatorcontrib>Breitbach, M.</creatorcontrib><title>On iterative soft-decision decoding of linear binary block codes and product codes</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>Iterative decoding methods have gained interest, initiated by the results of the so-called "turbo" codes. The theoretical description of this decoding, however, seems to be difficult. Therefore, we study the iterative decoding of block codes. First, we discuss the iterative decoding algorithms developed by Gallager (1962), Battail et al. (1979), and Hagenauer et al. (1996). Based on their results, we propose a decoding algorithm which only uses parity check vectors of minimum weight. We give the relation of this iterative decoding to one-step majority-logic decoding, and interpret it as gradient optimization. It is shown that the used parity check set defines the region where the iterative decoding decides on a particular codeword. We make plausible that, in almost all cases, the iterative decoding converges to a codeword after some iterations. We derive a computationally efficient implementation using the minimal trellis representing the used parity check set. Simulations illustrate that our algorithm gives results close to soft decision maximum likelihood (SDML) decoding for many code classes like BCH codes. Reed-Muller codes, quadratic residue codes, double circulant codes, and cyclic finite geometry codes. We also present simulation results for product codes and parallel concatenated codes based on block codes.</description><subject>AWGN</subject><subject>Block codes</subject><subject>Computational modeling</subject><subject>Concatenated codes</subject><subject>Iterative algorithms</subject><subject>Iterative decoding</subject><subject>Maximum likelihood decoding</subject><subject>Parity check codes</subject><subject>Product codes</subject><subject>Solid modeling</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LxDAQxYMoWFcPXj3lJHjoOtOkaXOUxS9YWBA9lzSZSrTbrElX8L-30sXTDPN-vMc8xi4Rloigb6VeKoWI6ohlWJZ1DgD1McugEiKvK1Sn7CylDwCUsi4y9rIZuB8pmtF_E0-hG3NH1icfBj4twfnhnYeO934gE3nrBxN_eNsH-8knlRI3g-O7GNzejvPlnJ10pk90cZgL9vZw_7p6ytebx-fV3Tq3RVWNOZWalAFXVqJVYIxCaZQTLdhSaGFlpamWAltAUzoEKXXdWudUYdBJJ0uxYNez75T-tac0NlufLPW9GSjsU1PUUiNqmMCbGbQxpBSpa3bRb6c_GoTmr7VG6mZubWKvZtYT0T93EH8B67ZnFw</recordid><startdate>19980201</startdate><enddate>19980201</enddate><creator>Lucas, R.</creator><creator>Bossert, M.</creator><creator>Breitbach, M.</creator><general>IEEE</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19980201</creationdate><title>On iterative soft-decision decoding of linear binary block codes and product codes</title><author>Lucas, R. ; Bossert, M. ; Breitbach, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-e59e6a0d573b60aa614a6d3b0c5393c479e8431b01a5d104498bcdd62a1d4d453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>AWGN</topic><topic>Block codes</topic><topic>Computational modeling</topic><topic>Concatenated codes</topic><topic>Iterative algorithms</topic><topic>Iterative decoding</topic><topic>Maximum likelihood decoding</topic><topic>Parity check codes</topic><topic>Product codes</topic><topic>Solid modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lucas, R.</creatorcontrib><creatorcontrib>Bossert, M.</creatorcontrib><creatorcontrib>Breitbach, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lucas, R.</au><au>Bossert, M.</au><au>Breitbach, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On iterative soft-decision decoding of linear binary block codes and product codes</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>1998-02-01</date><risdate>1998</risdate><volume>16</volume><issue>2</issue><spage>276</spage><epage>296</epage><pages>276-296</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>Iterative decoding methods have gained interest, initiated by the results of the so-called "turbo" codes. The theoretical description of this decoding, however, seems to be difficult. Therefore, we study the iterative decoding of block codes. First, we discuss the iterative decoding algorithms developed by Gallager (1962), Battail et al. (1979), and Hagenauer et al. (1996). Based on their results, we propose a decoding algorithm which only uses parity check vectors of minimum weight. We give the relation of this iterative decoding to one-step majority-logic decoding, and interpret it as gradient optimization. It is shown that the used parity check set defines the region where the iterative decoding decides on a particular codeword. We make plausible that, in almost all cases, the iterative decoding converges to a codeword after some iterations. We derive a computationally efficient implementation using the minimal trellis representing the used parity check set. Simulations illustrate that our algorithm gives results close to soft decision maximum likelihood (SDML) decoding for many code classes like BCH codes. Reed-Muller codes, quadratic residue codes, double circulant codes, and cyclic finite geometry codes. We also present simulation results for product codes and parallel concatenated codes based on block codes.</abstract><pub>IEEE</pub><doi>10.1109/49.661116</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-8716 |
ispartof | IEEE journal on selected areas in communications, 1998-02, Vol.16 (2), p.276-296 |
issn | 0733-8716 1558-0008 |
language | eng |
recordid | cdi_crossref_primary_10_1109_49_661116 |
source | IEEE Electronic Library (IEL) Journals |
subjects | AWGN Block codes Computational modeling Concatenated codes Iterative algorithms Iterative decoding Maximum likelihood decoding Parity check codes Product codes Solid modeling |
title | On iterative soft-decision decoding of linear binary block codes and product codes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A15%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20iterative%20soft-decision%20decoding%20of%20linear%20binary%20block%20codes%20and%20product%20codes&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Lucas,%20R.&rft.date=1998-02-01&rft.volume=16&rft.issue=2&rft.spage=276&rft.epage=296&rft.pages=276-296&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/49.661116&rft_dat=%3Cproquest_cross%3E28491190%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c277t-e59e6a0d573b60aa614a6d3b0c5393c479e8431b01a5d104498bcdd62a1d4d453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28491190&rft_id=info:pmid/&rft_ieee_id=661116&rfr_iscdi=true |