Loading…

On iterative soft-decision decoding of linear binary block codes and product codes

Iterative decoding methods have gained interest, initiated by the results of the so-called "turbo" codes. The theoretical description of this decoding, however, seems to be difficult. Therefore, we study the iterative decoding of block codes. First, we discuss the iterative decoding algori...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal on selected areas in communications 1998-02, Vol.16 (2), p.276-296
Main Authors: Lucas, R., Bossert, M., Breitbach, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c277t-e59e6a0d573b60aa614a6d3b0c5393c479e8431b01a5d104498bcdd62a1d4d453
cites cdi_FETCH-LOGICAL-c277t-e59e6a0d573b60aa614a6d3b0c5393c479e8431b01a5d104498bcdd62a1d4d453
container_end_page 296
container_issue 2
container_start_page 276
container_title IEEE journal on selected areas in communications
container_volume 16
creator Lucas, R.
Bossert, M.
Breitbach, M.
description Iterative decoding methods have gained interest, initiated by the results of the so-called "turbo" codes. The theoretical description of this decoding, however, seems to be difficult. Therefore, we study the iterative decoding of block codes. First, we discuss the iterative decoding algorithms developed by Gallager (1962), Battail et al. (1979), and Hagenauer et al. (1996). Based on their results, we propose a decoding algorithm which only uses parity check vectors of minimum weight. We give the relation of this iterative decoding to one-step majority-logic decoding, and interpret it as gradient optimization. It is shown that the used parity check set defines the region where the iterative decoding decides on a particular codeword. We make plausible that, in almost all cases, the iterative decoding converges to a codeword after some iterations. We derive a computationally efficient implementation using the minimal trellis representing the used parity check set. Simulations illustrate that our algorithm gives results close to soft decision maximum likelihood (SDML) decoding for many code classes like BCH codes. Reed-Muller codes, quadratic residue codes, double circulant codes, and cyclic finite geometry codes. We also present simulation results for product codes and parallel concatenated codes based on block codes.
doi_str_mv 10.1109/49.661116
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_49_661116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>661116</ieee_id><sourcerecordid>28491190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-e59e6a0d573b60aa614a6d3b0c5393c479e8431b01a5d104498bcdd62a1d4d453</originalsourceid><addsrcrecordid>eNo9kM1LxDAQxYMoWFcPXj3lJHjoOtOkaXOUxS9YWBA9lzSZSrTbrElX8L-30sXTDPN-vMc8xi4Rloigb6VeKoWI6ohlWJZ1DgD1McugEiKvK1Sn7CylDwCUsi4y9rIZuB8pmtF_E0-hG3NH1icfBj4twfnhnYeO934gE3nrBxN_eNsH-8knlRI3g-O7GNzejvPlnJ10pk90cZgL9vZw_7p6ytebx-fV3Tq3RVWNOZWalAFXVqJVYIxCaZQTLdhSaGFlpamWAltAUzoEKXXdWudUYdBJJ0uxYNez75T-tac0NlufLPW9GSjsU1PUUiNqmMCbGbQxpBSpa3bRb6c_GoTmr7VG6mZubWKvZtYT0T93EH8B67ZnFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28491190</pqid></control><display><type>article</type><title>On iterative soft-decision decoding of linear binary block codes and product codes</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lucas, R. ; Bossert, M. ; Breitbach, M.</creator><creatorcontrib>Lucas, R. ; Bossert, M. ; Breitbach, M.</creatorcontrib><description>Iterative decoding methods have gained interest, initiated by the results of the so-called "turbo" codes. The theoretical description of this decoding, however, seems to be difficult. Therefore, we study the iterative decoding of block codes. First, we discuss the iterative decoding algorithms developed by Gallager (1962), Battail et al. (1979), and Hagenauer et al. (1996). Based on their results, we propose a decoding algorithm which only uses parity check vectors of minimum weight. We give the relation of this iterative decoding to one-step majority-logic decoding, and interpret it as gradient optimization. It is shown that the used parity check set defines the region where the iterative decoding decides on a particular codeword. We make plausible that, in almost all cases, the iterative decoding converges to a codeword after some iterations. We derive a computationally efficient implementation using the minimal trellis representing the used parity check set. Simulations illustrate that our algorithm gives results close to soft decision maximum likelihood (SDML) decoding for many code classes like BCH codes. Reed-Muller codes, quadratic residue codes, double circulant codes, and cyclic finite geometry codes. We also present simulation results for product codes and parallel concatenated codes based on block codes.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/49.661116</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>AWGN ; Block codes ; Computational modeling ; Concatenated codes ; Iterative algorithms ; Iterative decoding ; Maximum likelihood decoding ; Parity check codes ; Product codes ; Solid modeling</subject><ispartof>IEEE journal on selected areas in communications, 1998-02, Vol.16 (2), p.276-296</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-e59e6a0d573b60aa614a6d3b0c5393c479e8431b01a5d104498bcdd62a1d4d453</citedby><cites>FETCH-LOGICAL-c277t-e59e6a0d573b60aa614a6d3b0c5393c479e8431b01a5d104498bcdd62a1d4d453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/661116$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Lucas, R.</creatorcontrib><creatorcontrib>Bossert, M.</creatorcontrib><creatorcontrib>Breitbach, M.</creatorcontrib><title>On iterative soft-decision decoding of linear binary block codes and product codes</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>Iterative decoding methods have gained interest, initiated by the results of the so-called "turbo" codes. The theoretical description of this decoding, however, seems to be difficult. Therefore, we study the iterative decoding of block codes. First, we discuss the iterative decoding algorithms developed by Gallager (1962), Battail et al. (1979), and Hagenauer et al. (1996). Based on their results, we propose a decoding algorithm which only uses parity check vectors of minimum weight. We give the relation of this iterative decoding to one-step majority-logic decoding, and interpret it as gradient optimization. It is shown that the used parity check set defines the region where the iterative decoding decides on a particular codeword. We make plausible that, in almost all cases, the iterative decoding converges to a codeword after some iterations. We derive a computationally efficient implementation using the minimal trellis representing the used parity check set. Simulations illustrate that our algorithm gives results close to soft decision maximum likelihood (SDML) decoding for many code classes like BCH codes. Reed-Muller codes, quadratic residue codes, double circulant codes, and cyclic finite geometry codes. We also present simulation results for product codes and parallel concatenated codes based on block codes.</description><subject>AWGN</subject><subject>Block codes</subject><subject>Computational modeling</subject><subject>Concatenated codes</subject><subject>Iterative algorithms</subject><subject>Iterative decoding</subject><subject>Maximum likelihood decoding</subject><subject>Parity check codes</subject><subject>Product codes</subject><subject>Solid modeling</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LxDAQxYMoWFcPXj3lJHjoOtOkaXOUxS9YWBA9lzSZSrTbrElX8L-30sXTDPN-vMc8xi4Rloigb6VeKoWI6ohlWJZ1DgD1McugEiKvK1Sn7CylDwCUsi4y9rIZuB8pmtF_E0-hG3NH1icfBj4twfnhnYeO934gE3nrBxN_eNsH-8knlRI3g-O7GNzejvPlnJ10pk90cZgL9vZw_7p6ytebx-fV3Tq3RVWNOZWalAFXVqJVYIxCaZQTLdhSaGFlpamWAltAUzoEKXXdWudUYdBJJ0uxYNez75T-tac0NlufLPW9GSjsU1PUUiNqmMCbGbQxpBSpa3bRb6c_GoTmr7VG6mZubWKvZtYT0T93EH8B67ZnFw</recordid><startdate>19980201</startdate><enddate>19980201</enddate><creator>Lucas, R.</creator><creator>Bossert, M.</creator><creator>Breitbach, M.</creator><general>IEEE</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19980201</creationdate><title>On iterative soft-decision decoding of linear binary block codes and product codes</title><author>Lucas, R. ; Bossert, M. ; Breitbach, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-e59e6a0d573b60aa614a6d3b0c5393c479e8431b01a5d104498bcdd62a1d4d453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>AWGN</topic><topic>Block codes</topic><topic>Computational modeling</topic><topic>Concatenated codes</topic><topic>Iterative algorithms</topic><topic>Iterative decoding</topic><topic>Maximum likelihood decoding</topic><topic>Parity check codes</topic><topic>Product codes</topic><topic>Solid modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lucas, R.</creatorcontrib><creatorcontrib>Bossert, M.</creatorcontrib><creatorcontrib>Breitbach, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lucas, R.</au><au>Bossert, M.</au><au>Breitbach, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On iterative soft-decision decoding of linear binary block codes and product codes</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>1998-02-01</date><risdate>1998</risdate><volume>16</volume><issue>2</issue><spage>276</spage><epage>296</epage><pages>276-296</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>Iterative decoding methods have gained interest, initiated by the results of the so-called "turbo" codes. The theoretical description of this decoding, however, seems to be difficult. Therefore, we study the iterative decoding of block codes. First, we discuss the iterative decoding algorithms developed by Gallager (1962), Battail et al. (1979), and Hagenauer et al. (1996). Based on their results, we propose a decoding algorithm which only uses parity check vectors of minimum weight. We give the relation of this iterative decoding to one-step majority-logic decoding, and interpret it as gradient optimization. It is shown that the used parity check set defines the region where the iterative decoding decides on a particular codeword. We make plausible that, in almost all cases, the iterative decoding converges to a codeword after some iterations. We derive a computationally efficient implementation using the minimal trellis representing the used parity check set. Simulations illustrate that our algorithm gives results close to soft decision maximum likelihood (SDML) decoding for many code classes like BCH codes. Reed-Muller codes, quadratic residue codes, double circulant codes, and cyclic finite geometry codes. We also present simulation results for product codes and parallel concatenated codes based on block codes.</abstract><pub>IEEE</pub><doi>10.1109/49.661116</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0733-8716
ispartof IEEE journal on selected areas in communications, 1998-02, Vol.16 (2), p.276-296
issn 0733-8716
1558-0008
language eng
recordid cdi_crossref_primary_10_1109_49_661116
source IEEE Electronic Library (IEL) Journals
subjects AWGN
Block codes
Computational modeling
Concatenated codes
Iterative algorithms
Iterative decoding
Maximum likelihood decoding
Parity check codes
Product codes
Solid modeling
title On iterative soft-decision decoding of linear binary block codes and product codes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A15%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20iterative%20soft-decision%20decoding%20of%20linear%20binary%20block%20codes%20and%20product%20codes&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Lucas,%20R.&rft.date=1998-02-01&rft.volume=16&rft.issue=2&rft.spage=276&rft.epage=296&rft.pages=276-296&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/49.661116&rft_dat=%3Cproquest_cross%3E28491190%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c277t-e59e6a0d573b60aa614a6d3b0c5393c479e8431b01a5d104498bcdd62a1d4d453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28491190&rft_id=info:pmid/&rft_ieee_id=661116&rfr_iscdi=true