Loading…
Nanoscale SNS junction fabrication in superconductor-normal metal bilayers
We have developed a reliable and versatile technique for fabricating SNS junctions in a superconductor-normal metal bilayer using a focused ion beam microscope (FIB) in conjunction with an in-situ resistance measurement technique. This technique offers a simple method for creating multi-junction dev...
Saved in:
Published in: | IEEE transactions on applied superconductivity 2001-03, Vol.11 (1), p.1126-1129 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have developed a reliable and versatile technique for fabricating SNS junctions in a superconductor-normal metal bilayer using a focused ion beam microscope (FIB) in conjunction with an in-situ resistance measurement technique. This technique offers a simple method for creating multi-junction devices (SQUIDs, 3-terminal devices, arrays) with high integration densities. In this paper we discuss recent results from devices created in Nb-Cu tracks by cutting 50 nm trenches in the top Nb layer to weaken the superconducting coupling. Cuts of depths between 60 and 100% of the Nb thickness yield reproducible junctions with current voltage (I(V)) characteristics in accordance with the resistively-shunted-junction (RSJ) model, characteristic voltage I/sub C/R/sub N//spl sim/50 /spl mu/V at 4.2 K and excellent microwave response. A thorough study has been carried out of the effect on device parameters of varying the Cu layer thickness (0-175 nm). In addition transmission electron microscopy (TEM) studies have been carried out on the device structure. A two-channel model of device operation has been developed and related to the results of I/sup C/R/sub N/(T) measurements (down to 350 mK) on selected devices. |
---|---|
ISSN: | 1051-8223 1558-2515 |
DOI: | 10.1109/77.919546 |