Loading…
An application of embedology to spatio-temporal pattern recognition
The theory of embedded time series is shown applicable for determining a reasonable lower bound on the length of test sequence required for accurate classification of moving objects. Sequentially recorded feature vectors of a moving object form a training trajectory in feature space. Each of the seq...
Saved in:
Published in: | IEEE transactions on aerospace and electronic systems 1996-04, Vol.32 (2), p.768-774 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The theory of embedded time series is shown applicable for determining a reasonable lower bound on the length of test sequence required for accurate classification of moving objects. Sequentially recorded feature vectors of a moving object form a training trajectory in feature space. Each of the sequences of feature vector components is a time series, and under certain conditions, each of these time series has approximately the same fractal dimension. The embedding theorem may be applied to this fractal dimension to establish a sufficient number of observations to determine the feature space trajectory of the object. It is argued that this number is a reasonable lower bound on test sequence length for use in object classification. Experiments with data corresponding to five military vehicles (observed following a projected Lorenz trajectory on a viewing sphere) show that this bound is indeed adequate. |
---|---|
ISSN: | 0018-9251 1557-9603 |
DOI: | 10.1109/7.489519 |