Loading…
Reliability Analysis of Uplink Grant-Free Transmission Over Shared Resources
Uplink grant-free schemes have the promise of reducing the latency of a user-equipment-initiated transmission by avoiding the handshaking procedure for acquiring a dedicated scheduling grant. However, the possibility of successfully delivering a payload within a latency constraint may be severely co...
Saved in:
Published in: | IEEE access 2018-01, Vol.6, p.23602-23611 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Uplink grant-free schemes have the promise of reducing the latency of a user-equipment-initiated transmission by avoiding the handshaking procedure for acquiring a dedicated scheduling grant. However, the possibility of successfully delivering a payload within a latency constraint may be severely compromised in case of grant-free operations over shared radio resources. In this paper, we study the performance of two different uplink grant-free schemes over shared resources recently discussed within the fifth generation new radio standardization, namely, a solution based on a stop-and-wait (SAW) protocol and a blind retransmission approach. Performance is evaluated assuming Rayleigh fading channels with a maximum ratio combining (MRC) multi-antenna receiver. Analytical results show the benefits of grant-free transmission with respect to the traditional grant-based approach for a tight latency constraint. A high-order receive diversity is beneficial to leverage the MRC gain and enables the possibility of achieving the 10 −5 outage probability target set for ultra-reliable low-latency communication services. The blind retransmission approach is significantly penalized by identification and signaling errors, while a SAW solution with potentially scheduled retransmissions out of the shared bandwidth leads to the lowest outage probability, at least for frequent packet arrivals. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2018.2827567 |