Loading…
Exploiting Discriminative Regions of Brain Slices Based on 2D CNNs for Alzheimer's Disease Classification
Convolutional neural networks (CNNs)-based classifiers improve the accuracy of diagnosis and prediction for Alzheimer's disease (AD). However, exploiting specific brain regions with the AD is essential to understand pathological alteration in the AD and monitor its progression. This paper aims...
Saved in:
Published in: | IEEE access 2019, Vol.7, p.181423-181433 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Convolutional neural networks (CNNs)-based classifiers improve the accuracy of diagnosis and prediction for Alzheimer's disease (AD). However, exploiting specific brain regions with the AD is essential to understand pathological alteration in the AD and monitor its progression. This paper aims to construct novel AD classification models which have a good performance and interpretation on AD diagnosis. We propose the three classifiers including a simple broaden plain CNNs (SBPCNNs), a major slice-assemble CNNs (SACNNs) and a multi-slice CNNs (MSCNNs), which record the slice positions but have fewer parameters. Specifically, we integrate the ranking and the random forest methods to find the discriminative region that is consistent with domain knowledge about the AD. The results of the visualization explanation of pixel and slice level deliver a clearer understanding of the AD to specialists. The experimental results indicate that the proposed models are meaningful for AD classification. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2019.2920241 |