Loading…

Exploiting Discriminative Regions of Brain Slices Based on 2D CNNs for Alzheimer's Disease Classification

Convolutional neural networks (CNNs)-based classifiers improve the accuracy of diagnosis and prediction for Alzheimer's disease (AD). However, exploiting specific brain regions with the AD is essential to understand pathological alteration in the AD and monitor its progression. This paper aims...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2019, Vol.7, p.181423-181433
Main Authors: Ren, Fujia, Yang, Chenhui, Qiu, Qi, Zeng, Nianyin, Cai, Chunting, Hou, Chaoqun, Zou, Quan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-89fea0ddc33aa255bc15f33eceb0b5f087e6fdb47c621d2890a058b24734e3fa3
cites cdi_FETCH-LOGICAL-c408t-89fea0ddc33aa255bc15f33eceb0b5f087e6fdb47c621d2890a058b24734e3fa3
container_end_page 181433
container_issue
container_start_page 181423
container_title IEEE access
container_volume 7
creator Ren, Fujia
Yang, Chenhui
Qiu, Qi
Zeng, Nianyin
Cai, Chunting
Hou, Chaoqun
Zou, Quan
description Convolutional neural networks (CNNs)-based classifiers improve the accuracy of diagnosis and prediction for Alzheimer's disease (AD). However, exploiting specific brain regions with the AD is essential to understand pathological alteration in the AD and monitor its progression. This paper aims to construct novel AD classification models which have a good performance and interpretation on AD diagnosis. We propose the three classifiers including a simple broaden plain CNNs (SBPCNNs), a major slice-assemble CNNs (SACNNs) and a multi-slice CNNs (MSCNNs), which record the slice positions but have fewer parameters. Specifically, we integrate the ranking and the random forest methods to find the discriminative region that is consistent with domain knowledge about the AD. The results of the visualization explanation of pixel and slice level deliver a clearer understanding of the AD to specialists. The experimental results indicate that the proposed models are meaningful for AD classification.
doi_str_mv 10.1109/ACCESS.2019.2920241
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2019_2920241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8727482</ieee_id><doaj_id>oai_doaj_org_article_3008fe84c28f4cab8929c2ee75e8400f</doaj_id><sourcerecordid>2455609187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-89fea0ddc33aa255bc15f33eceb0b5f087e6fdb47c621d2890a058b24734e3fa3</originalsourceid><addsrcrecordid>eNpNkc1OxCAUhRujiUZ9AjckLlzNyG8Ly7GOOonRxNE1ofQyMqllhGrUp5exxsgGcnLOd4FTFCcETwnB6nxW1_PlckoxUVOqKKac7BQHlJRqwgQrd_-d94vjlNY4L5klUR0Ufv6x6YIffL9Clz7Z6F98bwb_DugBVj70CQWHLqLxPVp23kJCFyZBi0KP6CWq7-4SciGiWff1DP4F4lnaciB7UN2ZlLzzNvNCf1TsOdMlOP7dD4unq_ljfTO5vb9e1LPbieVYDhOpHBjctpYxY6gQjSXCMQYWGtwIh2UFpWsbXtmSkpZKhQ0WsqG8YhyYM-ywWIzcNpi13uQHmfipg_H6RwhxpU0cvO1As_wPDiS3VDpuTSMVVZYCVCKLGLvMOh1Zmxhe3yANeh3eYp-vrykXosSKyCq72OiyMaQUwf1NJVhvK9JjRXpbkf6tKKdOxpQHgL-ErGjFJWXfNo2Muw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455609187</pqid></control><display><type>article</type><title>Exploiting Discriminative Regions of Brain Slices Based on 2D CNNs for Alzheimer's Disease Classification</title><source>IEEE Xplore Open Access Journals</source><creator>Ren, Fujia ; Yang, Chenhui ; Qiu, Qi ; Zeng, Nianyin ; Cai, Chunting ; Hou, Chaoqun ; Zou, Quan</creator><creatorcontrib>Ren, Fujia ; Yang, Chenhui ; Qiu, Qi ; Zeng, Nianyin ; Cai, Chunting ; Hou, Chaoqun ; Zou, Quan</creatorcontrib><description>Convolutional neural networks (CNNs)-based classifiers improve the accuracy of diagnosis and prediction for Alzheimer's disease (AD). However, exploiting specific brain regions with the AD is essential to understand pathological alteration in the AD and monitor its progression. This paper aims to construct novel AD classification models which have a good performance and interpretation on AD diagnosis. We propose the three classifiers including a simple broaden plain CNNs (SBPCNNs), a major slice-assemble CNNs (SACNNs) and a multi-slice CNNs (MSCNNs), which record the slice positions but have fewer parameters. Specifically, we integrate the ranking and the random forest methods to find the discriminative region that is consistent with domain knowledge about the AD. The results of the visualization explanation of pixel and slice level deliver a clearer understanding of the AD to specialists. The experimental results indicate that the proposed models are meaningful for AD classification.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2920241</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Alzheimer's disease ; Artificial neural networks ; Brain ; Brain modeling ; Classification ; Classifiers ; CNNs-based classification ; Computational modeling ; Convolution ; Diagnosis ; Solid modeling ; structural magnetic resonance imaging (sMRI) ; visual explanation</subject><ispartof>IEEE access, 2019, Vol.7, p.181423-181433</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-89fea0ddc33aa255bc15f33eceb0b5f087e6fdb47c621d2890a058b24734e3fa3</citedby><cites>FETCH-LOGICAL-c408t-89fea0ddc33aa255bc15f33eceb0b5f087e6fdb47c621d2890a058b24734e3fa3</cites><orcidid>0000-0002-5272-4540 ; 0000-0002-6957-2942</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8727482$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Ren, Fujia</creatorcontrib><creatorcontrib>Yang, Chenhui</creatorcontrib><creatorcontrib>Qiu, Qi</creatorcontrib><creatorcontrib>Zeng, Nianyin</creatorcontrib><creatorcontrib>Cai, Chunting</creatorcontrib><creatorcontrib>Hou, Chaoqun</creatorcontrib><creatorcontrib>Zou, Quan</creatorcontrib><title>Exploiting Discriminative Regions of Brain Slices Based on 2D CNNs for Alzheimer's Disease Classification</title><title>IEEE access</title><addtitle>Access</addtitle><description>Convolutional neural networks (CNNs)-based classifiers improve the accuracy of diagnosis and prediction for Alzheimer's disease (AD). However, exploiting specific brain regions with the AD is essential to understand pathological alteration in the AD and monitor its progression. This paper aims to construct novel AD classification models which have a good performance and interpretation on AD diagnosis. We propose the three classifiers including a simple broaden plain CNNs (SBPCNNs), a major slice-assemble CNNs (SACNNs) and a multi-slice CNNs (MSCNNs), which record the slice positions but have fewer parameters. Specifically, we integrate the ranking and the random forest methods to find the discriminative region that is consistent with domain knowledge about the AD. The results of the visualization explanation of pixel and slice level deliver a clearer understanding of the AD to specialists. The experimental results indicate that the proposed models are meaningful for AD classification.</description><subject>Alzheimer's disease</subject><subject>Artificial neural networks</subject><subject>Brain</subject><subject>Brain modeling</subject><subject>Classification</subject><subject>Classifiers</subject><subject>CNNs-based classification</subject><subject>Computational modeling</subject><subject>Convolution</subject><subject>Diagnosis</subject><subject>Solid modeling</subject><subject>structural magnetic resonance imaging (sMRI)</subject><subject>visual explanation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc1OxCAUhRujiUZ9AjckLlzNyG8Ly7GOOonRxNE1ofQyMqllhGrUp5exxsgGcnLOd4FTFCcETwnB6nxW1_PlckoxUVOqKKac7BQHlJRqwgQrd_-d94vjlNY4L5klUR0Ufv6x6YIffL9Clz7Z6F98bwb_DugBVj70CQWHLqLxPVp23kJCFyZBi0KP6CWq7-4SciGiWff1DP4F4lnaciB7UN2ZlLzzNvNCf1TsOdMlOP7dD4unq_ljfTO5vb9e1LPbieVYDhOpHBjctpYxY6gQjSXCMQYWGtwIh2UFpWsbXtmSkpZKhQ0WsqG8YhyYM-ywWIzcNpi13uQHmfipg_H6RwhxpU0cvO1As_wPDiS3VDpuTSMVVZYCVCKLGLvMOh1Zmxhe3yANeh3eYp-vrykXosSKyCq72OiyMaQUwf1NJVhvK9JjRXpbkf6tKKdOxpQHgL-ErGjFJWXfNo2Muw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Ren, Fujia</creator><creator>Yang, Chenhui</creator><creator>Qiu, Qi</creator><creator>Zeng, Nianyin</creator><creator>Cai, Chunting</creator><creator>Hou, Chaoqun</creator><creator>Zou, Quan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5272-4540</orcidid><orcidid>https://orcid.org/0000-0002-6957-2942</orcidid></search><sort><creationdate>2019</creationdate><title>Exploiting Discriminative Regions of Brain Slices Based on 2D CNNs for Alzheimer's Disease Classification</title><author>Ren, Fujia ; Yang, Chenhui ; Qiu, Qi ; Zeng, Nianyin ; Cai, Chunting ; Hou, Chaoqun ; Zou, Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-89fea0ddc33aa255bc15f33eceb0b5f087e6fdb47c621d2890a058b24734e3fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alzheimer's disease</topic><topic>Artificial neural networks</topic><topic>Brain</topic><topic>Brain modeling</topic><topic>Classification</topic><topic>Classifiers</topic><topic>CNNs-based classification</topic><topic>Computational modeling</topic><topic>Convolution</topic><topic>Diagnosis</topic><topic>Solid modeling</topic><topic>structural magnetic resonance imaging (sMRI)</topic><topic>visual explanation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Fujia</creatorcontrib><creatorcontrib>Yang, Chenhui</creatorcontrib><creatorcontrib>Qiu, Qi</creatorcontrib><creatorcontrib>Zeng, Nianyin</creatorcontrib><creatorcontrib>Cai, Chunting</creatorcontrib><creatorcontrib>Hou, Chaoqun</creatorcontrib><creatorcontrib>Zou, Quan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Fujia</au><au>Yang, Chenhui</au><au>Qiu, Qi</au><au>Zeng, Nianyin</au><au>Cai, Chunting</au><au>Hou, Chaoqun</au><au>Zou, Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploiting Discriminative Regions of Brain Slices Based on 2D CNNs for Alzheimer's Disease Classification</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>181423</spage><epage>181433</epage><pages>181423-181433</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Convolutional neural networks (CNNs)-based classifiers improve the accuracy of diagnosis and prediction for Alzheimer's disease (AD). However, exploiting specific brain regions with the AD is essential to understand pathological alteration in the AD and monitor its progression. This paper aims to construct novel AD classification models which have a good performance and interpretation on AD diagnosis. We propose the three classifiers including a simple broaden plain CNNs (SBPCNNs), a major slice-assemble CNNs (SACNNs) and a multi-slice CNNs (MSCNNs), which record the slice positions but have fewer parameters. Specifically, we integrate the ranking and the random forest methods to find the discriminative region that is consistent with domain knowledge about the AD. The results of the visualization explanation of pixel and slice level deliver a clearer understanding of the AD to specialists. The experimental results indicate that the proposed models are meaningful for AD classification.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2920241</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5272-4540</orcidid><orcidid>https://orcid.org/0000-0002-6957-2942</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.181423-181433
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2019_2920241
source IEEE Xplore Open Access Journals
subjects Alzheimer's disease
Artificial neural networks
Brain
Brain modeling
Classification
Classifiers
CNNs-based classification
Computational modeling
Convolution
Diagnosis
Solid modeling
structural magnetic resonance imaging (sMRI)
visual explanation
title Exploiting Discriminative Regions of Brain Slices Based on 2D CNNs for Alzheimer's Disease Classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A14%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploiting%20Discriminative%20Regions%20of%20Brain%20Slices%20Based%20on%202D%20CNNs%20for%20Alzheimer's%20Disease%20Classification&rft.jtitle=IEEE%20access&rft.au=Ren,%20Fujia&rft.date=2019&rft.volume=7&rft.spage=181423&rft.epage=181433&rft.pages=181423-181433&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2920241&rft_dat=%3Cproquest_cross%3E2455609187%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-89fea0ddc33aa255bc15f33eceb0b5f087e6fdb47c621d2890a058b24734e3fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455609187&rft_id=info:pmid/&rft_ieee_id=8727482&rfr_iscdi=true