Loading…
Exploiting Discriminative Regions of Brain Slices Based on 2D CNNs for Alzheimer's Disease Classification
Convolutional neural networks (CNNs)-based classifiers improve the accuracy of diagnosis and prediction for Alzheimer's disease (AD). However, exploiting specific brain regions with the AD is essential to understand pathological alteration in the AD and monitor its progression. This paper aims...
Saved in:
Published in: | IEEE access 2019, Vol.7, p.181423-181433 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-89fea0ddc33aa255bc15f33eceb0b5f087e6fdb47c621d2890a058b24734e3fa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-89fea0ddc33aa255bc15f33eceb0b5f087e6fdb47c621d2890a058b24734e3fa3 |
container_end_page | 181433 |
container_issue | |
container_start_page | 181423 |
container_title | IEEE access |
container_volume | 7 |
creator | Ren, Fujia Yang, Chenhui Qiu, Qi Zeng, Nianyin Cai, Chunting Hou, Chaoqun Zou, Quan |
description | Convolutional neural networks (CNNs)-based classifiers improve the accuracy of diagnosis and prediction for Alzheimer's disease (AD). However, exploiting specific brain regions with the AD is essential to understand pathological alteration in the AD and monitor its progression. This paper aims to construct novel AD classification models which have a good performance and interpretation on AD diagnosis. We propose the three classifiers including a simple broaden plain CNNs (SBPCNNs), a major slice-assemble CNNs (SACNNs) and a multi-slice CNNs (MSCNNs), which record the slice positions but have fewer parameters. Specifically, we integrate the ranking and the random forest methods to find the discriminative region that is consistent with domain knowledge about the AD. The results of the visualization explanation of pixel and slice level deliver a clearer understanding of the AD to specialists. The experimental results indicate that the proposed models are meaningful for AD classification. |
doi_str_mv | 10.1109/ACCESS.2019.2920241 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2019_2920241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8727482</ieee_id><doaj_id>oai_doaj_org_article_3008fe84c28f4cab8929c2ee75e8400f</doaj_id><sourcerecordid>2455609187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-89fea0ddc33aa255bc15f33eceb0b5f087e6fdb47c621d2890a058b24734e3fa3</originalsourceid><addsrcrecordid>eNpNkc1OxCAUhRujiUZ9AjckLlzNyG8Ly7GOOonRxNE1ofQyMqllhGrUp5exxsgGcnLOd4FTFCcETwnB6nxW1_PlckoxUVOqKKac7BQHlJRqwgQrd_-d94vjlNY4L5klUR0Ufv6x6YIffL9Clz7Z6F98bwb_DugBVj70CQWHLqLxPVp23kJCFyZBi0KP6CWq7-4SciGiWff1DP4F4lnaciB7UN2ZlLzzNvNCf1TsOdMlOP7dD4unq_ljfTO5vb9e1LPbieVYDhOpHBjctpYxY6gQjSXCMQYWGtwIh2UFpWsbXtmSkpZKhQ0WsqG8YhyYM-ywWIzcNpi13uQHmfipg_H6RwhxpU0cvO1As_wPDiS3VDpuTSMVVZYCVCKLGLvMOh1Zmxhe3yANeh3eYp-vrykXosSKyCq72OiyMaQUwf1NJVhvK9JjRXpbkf6tKKdOxpQHgL-ErGjFJWXfNo2Muw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455609187</pqid></control><display><type>article</type><title>Exploiting Discriminative Regions of Brain Slices Based on 2D CNNs for Alzheimer's Disease Classification</title><source>IEEE Xplore Open Access Journals</source><creator>Ren, Fujia ; Yang, Chenhui ; Qiu, Qi ; Zeng, Nianyin ; Cai, Chunting ; Hou, Chaoqun ; Zou, Quan</creator><creatorcontrib>Ren, Fujia ; Yang, Chenhui ; Qiu, Qi ; Zeng, Nianyin ; Cai, Chunting ; Hou, Chaoqun ; Zou, Quan</creatorcontrib><description>Convolutional neural networks (CNNs)-based classifiers improve the accuracy of diagnosis and prediction for Alzheimer's disease (AD). However, exploiting specific brain regions with the AD is essential to understand pathological alteration in the AD and monitor its progression. This paper aims to construct novel AD classification models which have a good performance and interpretation on AD diagnosis. We propose the three classifiers including a simple broaden plain CNNs (SBPCNNs), a major slice-assemble CNNs (SACNNs) and a multi-slice CNNs (MSCNNs), which record the slice positions but have fewer parameters. Specifically, we integrate the ranking and the random forest methods to find the discriminative region that is consistent with domain knowledge about the AD. The results of the visualization explanation of pixel and slice level deliver a clearer understanding of the AD to specialists. The experimental results indicate that the proposed models are meaningful for AD classification.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2920241</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Alzheimer's disease ; Artificial neural networks ; Brain ; Brain modeling ; Classification ; Classifiers ; CNNs-based classification ; Computational modeling ; Convolution ; Diagnosis ; Solid modeling ; structural magnetic resonance imaging (sMRI) ; visual explanation</subject><ispartof>IEEE access, 2019, Vol.7, p.181423-181433</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-89fea0ddc33aa255bc15f33eceb0b5f087e6fdb47c621d2890a058b24734e3fa3</citedby><cites>FETCH-LOGICAL-c408t-89fea0ddc33aa255bc15f33eceb0b5f087e6fdb47c621d2890a058b24734e3fa3</cites><orcidid>0000-0002-5272-4540 ; 0000-0002-6957-2942</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8727482$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Ren, Fujia</creatorcontrib><creatorcontrib>Yang, Chenhui</creatorcontrib><creatorcontrib>Qiu, Qi</creatorcontrib><creatorcontrib>Zeng, Nianyin</creatorcontrib><creatorcontrib>Cai, Chunting</creatorcontrib><creatorcontrib>Hou, Chaoqun</creatorcontrib><creatorcontrib>Zou, Quan</creatorcontrib><title>Exploiting Discriminative Regions of Brain Slices Based on 2D CNNs for Alzheimer's Disease Classification</title><title>IEEE access</title><addtitle>Access</addtitle><description>Convolutional neural networks (CNNs)-based classifiers improve the accuracy of diagnosis and prediction for Alzheimer's disease (AD). However, exploiting specific brain regions with the AD is essential to understand pathological alteration in the AD and monitor its progression. This paper aims to construct novel AD classification models which have a good performance and interpretation on AD diagnosis. We propose the three classifiers including a simple broaden plain CNNs (SBPCNNs), a major slice-assemble CNNs (SACNNs) and a multi-slice CNNs (MSCNNs), which record the slice positions but have fewer parameters. Specifically, we integrate the ranking and the random forest methods to find the discriminative region that is consistent with domain knowledge about the AD. The results of the visualization explanation of pixel and slice level deliver a clearer understanding of the AD to specialists. The experimental results indicate that the proposed models are meaningful for AD classification.</description><subject>Alzheimer's disease</subject><subject>Artificial neural networks</subject><subject>Brain</subject><subject>Brain modeling</subject><subject>Classification</subject><subject>Classifiers</subject><subject>CNNs-based classification</subject><subject>Computational modeling</subject><subject>Convolution</subject><subject>Diagnosis</subject><subject>Solid modeling</subject><subject>structural magnetic resonance imaging (sMRI)</subject><subject>visual explanation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc1OxCAUhRujiUZ9AjckLlzNyG8Ly7GOOonRxNE1ofQyMqllhGrUp5exxsgGcnLOd4FTFCcETwnB6nxW1_PlckoxUVOqKKac7BQHlJRqwgQrd_-d94vjlNY4L5klUR0Ufv6x6YIffL9Clz7Z6F98bwb_DugBVj70CQWHLqLxPVp23kJCFyZBi0KP6CWq7-4SciGiWff1DP4F4lnaciB7UN2ZlLzzNvNCf1TsOdMlOP7dD4unq_ljfTO5vb9e1LPbieVYDhOpHBjctpYxY6gQjSXCMQYWGtwIh2UFpWsbXtmSkpZKhQ0WsqG8YhyYM-ywWIzcNpi13uQHmfipg_H6RwhxpU0cvO1As_wPDiS3VDpuTSMVVZYCVCKLGLvMOh1Zmxhe3yANeh3eYp-vrykXosSKyCq72OiyMaQUwf1NJVhvK9JjRXpbkf6tKKdOxpQHgL-ErGjFJWXfNo2Muw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Ren, Fujia</creator><creator>Yang, Chenhui</creator><creator>Qiu, Qi</creator><creator>Zeng, Nianyin</creator><creator>Cai, Chunting</creator><creator>Hou, Chaoqun</creator><creator>Zou, Quan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5272-4540</orcidid><orcidid>https://orcid.org/0000-0002-6957-2942</orcidid></search><sort><creationdate>2019</creationdate><title>Exploiting Discriminative Regions of Brain Slices Based on 2D CNNs for Alzheimer's Disease Classification</title><author>Ren, Fujia ; Yang, Chenhui ; Qiu, Qi ; Zeng, Nianyin ; Cai, Chunting ; Hou, Chaoqun ; Zou, Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-89fea0ddc33aa255bc15f33eceb0b5f087e6fdb47c621d2890a058b24734e3fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alzheimer's disease</topic><topic>Artificial neural networks</topic><topic>Brain</topic><topic>Brain modeling</topic><topic>Classification</topic><topic>Classifiers</topic><topic>CNNs-based classification</topic><topic>Computational modeling</topic><topic>Convolution</topic><topic>Diagnosis</topic><topic>Solid modeling</topic><topic>structural magnetic resonance imaging (sMRI)</topic><topic>visual explanation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Fujia</creatorcontrib><creatorcontrib>Yang, Chenhui</creatorcontrib><creatorcontrib>Qiu, Qi</creatorcontrib><creatorcontrib>Zeng, Nianyin</creatorcontrib><creatorcontrib>Cai, Chunting</creatorcontrib><creatorcontrib>Hou, Chaoqun</creatorcontrib><creatorcontrib>Zou, Quan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Fujia</au><au>Yang, Chenhui</au><au>Qiu, Qi</au><au>Zeng, Nianyin</au><au>Cai, Chunting</au><au>Hou, Chaoqun</au><au>Zou, Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploiting Discriminative Regions of Brain Slices Based on 2D CNNs for Alzheimer's Disease Classification</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>181423</spage><epage>181433</epage><pages>181423-181433</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Convolutional neural networks (CNNs)-based classifiers improve the accuracy of diagnosis and prediction for Alzheimer's disease (AD). However, exploiting specific brain regions with the AD is essential to understand pathological alteration in the AD and monitor its progression. This paper aims to construct novel AD classification models which have a good performance and interpretation on AD diagnosis. We propose the three classifiers including a simple broaden plain CNNs (SBPCNNs), a major slice-assemble CNNs (SACNNs) and a multi-slice CNNs (MSCNNs), which record the slice positions but have fewer parameters. Specifically, we integrate the ranking and the random forest methods to find the discriminative region that is consistent with domain knowledge about the AD. The results of the visualization explanation of pixel and slice level deliver a clearer understanding of the AD to specialists. The experimental results indicate that the proposed models are meaningful for AD classification.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2920241</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5272-4540</orcidid><orcidid>https://orcid.org/0000-0002-6957-2942</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.181423-181433 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2019_2920241 |
source | IEEE Xplore Open Access Journals |
subjects | Alzheimer's disease Artificial neural networks Brain Brain modeling Classification Classifiers CNNs-based classification Computational modeling Convolution Diagnosis Solid modeling structural magnetic resonance imaging (sMRI) visual explanation |
title | Exploiting Discriminative Regions of Brain Slices Based on 2D CNNs for Alzheimer's Disease Classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A14%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploiting%20Discriminative%20Regions%20of%20Brain%20Slices%20Based%20on%202D%20CNNs%20for%20Alzheimer's%20Disease%20Classification&rft.jtitle=IEEE%20access&rft.au=Ren,%20Fujia&rft.date=2019&rft.volume=7&rft.spage=181423&rft.epage=181433&rft.pages=181423-181433&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2920241&rft_dat=%3Cproquest_cross%3E2455609187%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-89fea0ddc33aa255bc15f33eceb0b5f087e6fdb47c621d2890a058b24734e3fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455609187&rft_id=info:pmid/&rft_ieee_id=8727482&rfr_iscdi=true |