Loading…

Using Sequential Decision Making to Improve Lung Cancer Screening Performance

Globally, lung cancer is responsible for nearly one in five cancer deaths. The National Lung Screening Trial (NLST) demonstrated the efficacy of low-dose computed tomography (LDCT) to identify early-stage disease, setting the basis for widespread implementation of lung cancer screening programs. How...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2019, Vol.7, p.119403-119419
Main Authors: Petousis, Panayiotis, Winter, Audrey, Speier, William, Aberle, Denise R., Hsu, William, Bui, Alex A. T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Globally, lung cancer is responsible for nearly one in five cancer deaths. The National Lung Screening Trial (NLST) demonstrated the efficacy of low-dose computed tomography (LDCT) to identify early-stage disease, setting the basis for widespread implementation of lung cancer screening programs. However, the specificity of LDCT lung cancer screening is suboptimal, with a significant false positive rate. Representing this imaging-based screening process as a sequential decision making problem, we combined multiple machine learning-based methods to learn a partially-observable Markov decision process that simultaneously optimizes lung cancer detection while enhancing test specificity. Using NLST data, we trained a dynamic Bayesian network as an observational model and used inverse reinforcement learning to discover a rewards function based on experts' decisions. Our resultant predictive model decreased the false positive rate while maintaining a high true positive rate at a level comparable to human experts. Our model also detected a number of lung cancers earlier.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2935763