Loading…

Robust and Optimal Control Designed for Autonomous Surface Vessel Prototypes

It is well known that activities in running water or wind and waves expose the Autonomous Surface Vessels (ASVs) to considerable challenges. Under these conditions, it is essential to develop a robust control system that can meet the requirements and ensure the safe and accurate execution of mission...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2023-01, Vol.11, p.1-1
Main Authors: Dos Santos, Murillo Ferreira, Dos Santos Neto, Accacio Ferreira, De Mello Honorio, Leonardo, Da Silva, Mathaus Ferreira, Mercorelli, Paolo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It is well known that activities in running water or wind and waves expose the Autonomous Surface Vessels (ASVs) to considerable challenges. Under these conditions, it is essential to develop a robust control system that can meet the requirements and ensure the safe and accurate execution of missions. In this context, this paper presents a new topology for controller design based on a combination of the Successive Loop Closure (SLC) method and optimal control. This topology enables the design of robust autopilots based on the Proportional-Integral-Derivative (PID) controller. The controllers are tuned from the solution of the optimal control problem, which aims to minimize the effects of model uncertainties. To verify the effectiveness of the proposed controller, a numerical case study of a natural ASV with 3 Degree of Freedom (DoF) is investigated. The results show that the methodology enabled the tuning of a PID controller capable of dealing with different parametric uncertainties, demonstrating robustness and applicability for different prototype scenarios.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2023.3239591