Loading…
Non-Contact Sleep Stage Detection Using Canonical Correlation Analysis of Respiratory Sound
Respiratory sound is able to differentiate sleep stages and provide a non-contact and cost-effective solution for the diagnosis and treatment monitoring of sleep-related diseases. While most of the existing respiratory sound-based methods focus on a limited number of sleep stages such as sleep/wake...
Saved in:
Published in: | IEEE journal of biomedical and health informatics 2020-02, Vol.24 (2), p.614-625 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Respiratory sound is able to differentiate sleep stages and provide a non-contact and cost-effective solution for the diagnosis and treatment monitoring of sleep-related diseases. While most of the existing respiratory sound-based methods focus on a limited number of sleep stages such as sleep/wake and wake/rapid eye movement (REM)/non-REM, it is essential to detect sleep stages at a finer level for sleep quality evaluation. In this paper, we for the first time study a sleep stage detection method aiming at classifying sleep states into four sleep stages: wake, REM, light sleep, and deep sleep from the respiratory sound. In addition to extracting time-domain features, frequency-domain features of respiratory sound, non-linear features of snoring sound are devised to better characterize snoring-related signals of respiratory sound. To effectively fuse the three sets of features, a novel feature fusion technique combining the generalized canonical correlation analysis with the Relief-F algorithm is proposed for discriminative feature selection. Final stage detection is achieved with popular classifiers including decision tree, support vector machines, K-nearest neighbor, and the ensemble classifier. To evaluate our proposed method, we built an in-house dataset, which is comprised of 13 nights of sleep audio data from a sleep laboratory. Experimental results indicate that our proposed method outperforms the existing related ones and is promising for large-scale non-contact sleep monitoring. |
---|---|
ISSN: | 2168-2194 2168-2208 |
DOI: | 10.1109/JBHI.2019.2910566 |