Loading…
Natural Language Generation Model for Mammography Reports Simulation
Extending the size of labeled corpora of medical reports is a major step towards a successful training of machine learning algorithms. Simulating new text reports is a key solution for reports augmentation, which extends the cohort size. However, text generation in the medical domain is challenging...
Saved in:
Published in: | IEEE journal of biomedical and health informatics 2020-09, Vol.24 (9), p.2711-2717 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Extending the size of labeled corpora of medical reports is a major step towards a successful training of machine learning algorithms. Simulating new text reports is a key solution for reports augmentation, which extends the cohort size. However, text generation in the medical domain is challenging because it needs to preserve both content and style that are typical for real reports, without risking the patients' privacy. In this paper, we present a conditioned LSTM-RNN architecture for simulating realistic mammography reports. We evaluated the performance by analyzing the characteristics of the simulated reports and classifying them into benign and malignant classes. An average classification AUC was calculated over two distinct test sets. A qualitative analysis was also performed in which a masked radiologist classified 0.75 of the simulated reports as real reports, showing that both the style and content of the simulated reports were similar to real reports. Finally, we compared our RNN-LSTM generative model with Markov Random Fields. The RNN-LSTM provided significantly better and more stable performance than MRFs (p< 0.01, Wilcoxon). |
---|---|
ISSN: | 2168-2194 2168-2208 |
DOI: | 10.1109/JBHI.2020.2980118 |