Loading…

Resistivity network and structural model of the oxide cathode for CRT application

In this paper, the electrical properties of oxide cathode and oxide cathode plus, supplied by LG Philips Displays, have been investigated in relation to different cathode activation regimes and methods. Oxide cathode activation treatment for different durations has been investigated. The formations...

Full description

Saved in:
Bibliographic Details
Published in:Journal of display technology 2006-06, Vol.2 (2), p.186-193
Main Authors: Hashim, A.A., Barratt, D.S., Hassan, A.K., Evans-Freeman, H., Nabok, V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, the electrical properties of oxide cathode and oxide cathode plus, supplied by LG Philips Displays, have been investigated in relation to different cathode activation regimes and methods. Oxide cathode activation treatment for different durations has been investigated. The formations of the compounds associated to the diffusion of reducing elements (Mg, Al, and W) to the Ni cap surface of oxide cathode were studied by a new suggestion method. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX) was used as analytical techniques. Al, W, and Mg doping elements take place during heating to 1080 K (Ni-Brightness) under a rich controlled Ba-SrO atmosphere through an acceleration life test. The chemical transport of these elements was occurred mainly by the Ni cap grain boundary mechanism with significant pile-up of Mg compounds. Al and W show a superficial concentrations and distribution. A new structural and resistivity network model of oxide cathode plus are suggested. The new structural model shows a number of metallic and metallic oxide pathways are exist at the interface or extended through the oxide coating. The effective values of the resistances and the type of the equivalent circuit in the resistivity network model are temperature and activation time dependent
ISSN:1551-319X
1558-9323
DOI:10.1109/JDT.2006.874506