Loading…

Indoor Localization by Fusing a Group of Fingerprints Based on Random Forests

Indoor localization is becoming critical to empower Internet of Things for various applications, such as asset tracking, autonomous parking, virtual reality, context awareness, condition monitoring, geolocation, smart manufacturing, as well as smart cities. It is well known that indoor localization...

Full description

Saved in:
Bibliographic Details
Published in:IEEE internet of things journal 2018-12, Vol.5 (6), p.4686-4698
Main Authors: Guo, Xiansheng, Ansari, Nirwan, Li, Lin, Li, Huiyong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Indoor localization is becoming critical to empower Internet of Things for various applications, such as asset tracking, autonomous parking, virtual reality, context awareness, condition monitoring, geolocation, smart manufacturing, as well as smart cities. It is well known that indoor localization based on some single fingerprints is rather susceptible to the changing environment. The efficiency of building single fingerprints from one localization system is also low. Recently, we first proposed a group of fingerprints (GOOF) based localization to improve the efficiency of building fingerprints, and then proposed an efficient fusion algorithm, namely, multiple classifiers multiple samples (MUCUS), to improve the accuracy of localization. However, the main drawbacks of MUCUS are the low localization efficiency and low accuracy when all classifiers show poor performance simultaneously. In this paper, based on the aforementioned GOOF, we propose a sliding window aided mode-based (SWIM) fusion algorithm to balance the localization accuracy and efficiency. SWIM first adopts windowing and sliding techniques to improve the localization efficiency, and then obtains a more accurate estimate by minimizing the entropy of multiple classifiers or multiple samples. This can guarantee our estimator to be robust to changing environment and larger noise level. We demonstrate the performance of our algorithms through simulations and real experimental data via two universal software radio peripheral platforms.
ISSN:2327-4662
2327-4662
DOI:10.1109/JIOT.2018.2810601