Loading…
STONNE: Enabling Cycle-Level Microarchitectural Simulation for DNN Inference Accelerators
The design of specialized architectures for accelerating the inference procedure of Deep Neural Networks (DNNs) is a booming area of research nowadays. While first-generation rigid accelerator proposals used simple fixed dataflows tailored for dense DNNs, more recent architectures have argued for fl...
Saved in:
Published in: | IEEE computer architecture letters 2021-07, Vol.20 (2), p.122-125 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The design of specialized architectures for accelerating the inference procedure of Deep Neural Networks (DNNs) is a booming area of research nowadays. While first-generation rigid accelerator proposals used simple fixed dataflows tailored for dense DNNs, more recent architectures have argued for flexibility to efficiently support a wide variety of layer types, dimensions, and sparsity. As the complexity of these accelerators grows, the analytical models currently being used prove unable to capture execution-time subtleties, thus resulting inexact in many cases. We present STONNE ( S imulation TO ol of N eural N etwork E ngines ), a cycle-level microarchitectural simulator for state-of-the-art rigid and flexible DNN inference accelerators that can plug into any high-level DNN framework as an accelerator device, and perform full-model evaluation of both dense and sparse real, unmodified DNN models. |
---|---|
ISSN: | 1556-6056 1556-6064 |
DOI: | 10.1109/LCA.2021.3097253 |