Loading…

Rank-One Detector for Kronecker-Structured Constant Modulus Constellations

To achieve a reliable communication with short data blocks, we propose a novel decoding strategy for Kronecker-structured constant modulus signals that provides low bit error ratios (BERs) especially in the low energy per bit to noise power spectral density ratio (E_b/N_o). The encoder exploits the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE signal processing letters 2020, Vol.27, p.1420-1424
Main Authors: E-Asim, Fazal, de Almeida, Andre L. F., Haardt, Martin, Cavalcante, Charles C., Nossek, Josef A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To achieve a reliable communication with short data blocks, we propose a novel decoding strategy for Kronecker-structured constant modulus signals that provides low bit error ratios (BERs) especially in the low energy per bit to noise power spectral density ratio (E_b/N_o). The encoder exploits the fact that any M-PSK constellation can be factorized as Kronecker products of lower or equal order PSK constellation sets. A construction of two types of schemes is first derived. For such Kronecker-structured schemes, a conceptually simple decoding algorithm is proposed, referred to as Kronecker-RoD (rank-one detector). The decoder is based on a rank-one approximation of the "tensorized" received data block, has a built-in noise rejection capability and a smaller implementation complexity than state-of-the-art detectors. Compared with convolutional codes with hard and soft Viterbi decoding, Kronecker-RoD outperforms the latter in BER performance at same spectral efficiency.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2020.3010133