Loading…
Stepped-waveguide material-characterization technique
Electromagnetic material characterization is the process of determining the complex permittivity and permeability of a material. Rectangular-waveguide measurements involving frequencies greater than several gigahertz require only a relatively small test sample. In an X-band (8-12 GHz) waveguide, for...
Saved in:
Published in: | IEEE antennas & propagation magazine 2004-02, Vol.46 (1), p.170-175 |
---|---|
Main Authors: | , , , , |
Format: | Magazinearticle |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electromagnetic material characterization is the process of determining the complex permittivity and permeability of a material. Rectangular-waveguide measurements involving frequencies greater than several gigahertz require only a relatively small test sample. In an X-band (8-12 GHz) waveguide, for example, sample dimensions in the cross-sectional plane are only 0.9 in by 0.4 in. However, waveguide dimensions become progressively larger for lower-frequency applications. Consequently, the larger quantities of materials are required, leading to possible sample-fabrication difficulties. Under these circumstances, a waveguide sample holder having a reduced aperture may be utilized to reduce the time and cost spent producing large, precision samples. However, this type of holder will cause a disruption in the waveguide-wall surface currents, resulting in the excitation of higher-order modes. This paper will demonstrate how these higher-order modes can be accommodated using a modal-analysis technique. This results in the ability to measure smaller samples mounted in large waveguides and still determine the constitutive parameters of the materials at the desired frequencies. |
---|---|
ISSN: | 1045-9243 1558-4143 |
DOI: | 10.1109/MAP.2004.1296183 |