Loading…

Demystifying 3D ICs: the pros and cons of going vertical

This article provides a practical introduction to the design trade-offs of the currently available 3D IC technology options. It begins with an overview of techniques, such as wire bonding, microbumps, through vias, and contactless interconnection, comparing them in terms of vertical density and prac...

Full description

Saved in:
Bibliographic Details
Published in:IEEE design & test of computers 2005-11, Vol.22 (6), p.498-510
Main Authors: Davis, W.R., Wilson, J., Mick, S., Xu, J., Hua, H., Mineo, C., Sule, A.M., Steer, M., Franzon, P.D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c261t-f4d7041dc4542f4a8b587643e7cbccf1faa7841121ca9552719dfbf8869d46423
cites cdi_FETCH-LOGICAL-c261t-f4d7041dc4542f4a8b587643e7cbccf1faa7841121ca9552719dfbf8869d46423
container_end_page 510
container_issue 6
container_start_page 498
container_title IEEE design & test of computers
container_volume 22
creator Davis, W.R.
Wilson, J.
Mick, S.
Xu, J.
Hua, H.
Mineo, C.
Sule, A.M.
Steer, M.
Franzon, P.D.
description This article provides a practical introduction to the design trade-offs of the currently available 3D IC technology options. It begins with an overview of techniques, such as wire bonding, microbumps, through vias, and contactless interconnection, comparing them in terms of vertical density and practical limits to their use. We then present a high-level discussion of the pros and cons of 3D technologies, with an analysis relating the number of transistors on a chip to the vertical interconnect density using estimates based on Rent's rule. Next, we provide a more detailed design example of inductively coupled interconnects, with measured results of a system fabricated in a 0.35-μm technology and an analysis of misalignment and crosstalk tolerances. Lastly, we present a case study of a fast Fourier transform (FFT) placed and routed in a 0.18-μm through-via silicon-on-insulator (SOI) technology, comparing the 3D design to a traditional 2D approach in terms of wire length and critical-path delay.
doi_str_mv 10.1109/MDT.2005.136
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_MDT_2005_136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1541910</ieee_id><sourcerecordid>2543564491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-f4d7041dc4542f4a8b587643e7cbccf1faa7841121ca9552719dfbf8869d46423</originalsourceid><addsrcrecordid>eNp90b1LAzEcxvEgCtbq5uYSHMTBq_nlPW7S-lKouNQ5pLmkXmnv9HIV-t-bo4Lg4JTlw0PyDULnQEYAxNy-TOYjSogYAZMHaABC6AIM6EM0IIqTQnEljtFJSitCCICUA6QnYbNLXRV3Vb3EbIKn43SHu_eAP9omYVeX2Dd1wk3Ey6YnX6HtKu_Wp-gounUKZz_nEL09PszHz8Xs9Wk6vp8VnkroishLRTiUngtOI3d6IbSSnAXlF95HiM4pzQEoeGeEoApMGRdRa2lKLjllQ3S13833-dyG1NlNlXxYr10dmm2yVCuqieAZXv8LgYCRhjJmMr38Q1fNtq3zM6wBSiQjpt-72SOfQ6Q2RPvRVhvX7vKS7XPbnNv2uW3OnfnFnlchhF8qeP4Awr4BwuN30A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912063094</pqid></control><display><type>article</type><title>Demystifying 3D ICs: the pros and cons of going vertical</title><source>IEEE Xplore (Online service)</source><creator>Davis, W.R. ; Wilson, J. ; Mick, S. ; Xu, J. ; Hua, H. ; Mineo, C. ; Sule, A.M. ; Steer, M. ; Franzon, P.D.</creator><creatorcontrib>Davis, W.R. ; Wilson, J. ; Mick, S. ; Xu, J. ; Hua, H. ; Mineo, C. ; Sule, A.M. ; Steer, M. ; Franzon, P.D.</creatorcontrib><description>This article provides a practical introduction to the design trade-offs of the currently available 3D IC technology options. It begins with an overview of techniques, such as wire bonding, microbumps, through vias, and contactless interconnection, comparing them in terms of vertical density and practical limits to their use. We then present a high-level discussion of the pros and cons of 3D technologies, with an analysis relating the number of transistors on a chip to the vertical interconnect density using estimates based on Rent's rule. Next, we provide a more detailed design example of inductively coupled interconnects, with measured results of a system fabricated in a 0.35-μm technology and an analysis of misalignment and crosstalk tolerances. Lastly, we present a case study of a fast Fourier transform (FFT) placed and routed in a 0.18-μm through-via silicon-on-insulator (SOI) technology, comparing the 3D design to a traditional 2D approach in terms of wire length and critical-path delay.</description><identifier>ISSN: 0740-7475</identifier><identifier>ISSN: 2168-2356</identifier><identifier>EISSN: 1558-1918</identifier><identifier>EISSN: 2168-2364</identifier><identifier>DOI: 10.1109/MDT.2005.136</identifier><identifier>CODEN: IDTCEC</identifier><language>eng</language><publisher>Los Alamitos: IEEE Computer Society</publisher><subject>Assembly ; C.0.e System architectures ; Delay ; Density ; Design engineering ; Estimates ; Fourier transforms ; I/O and Data Communications ; integration and modeling ; Interconnection architectures ; Microorganisms ; Misalignment ; Packaging ; Parallel I/O ; Placement and routing ; Receivers ; Routing ; Routing and layout ; Silicon on insulator technology ; Stress ; Studies ; Three dimensional ; Transmitters ; Wafer bonding ; Wire</subject><ispartof>IEEE design &amp; test of computers, 2005-11, Vol.22 (6), p.498-510</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-f4d7041dc4542f4a8b587643e7cbccf1faa7841121ca9552719dfbf8869d46423</citedby><cites>FETCH-LOGICAL-c261t-f4d7041dc4542f4a8b587643e7cbccf1faa7841121ca9552719dfbf8869d46423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1541910$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Davis, W.R.</creatorcontrib><creatorcontrib>Wilson, J.</creatorcontrib><creatorcontrib>Mick, S.</creatorcontrib><creatorcontrib>Xu, J.</creatorcontrib><creatorcontrib>Hua, H.</creatorcontrib><creatorcontrib>Mineo, C.</creatorcontrib><creatorcontrib>Sule, A.M.</creatorcontrib><creatorcontrib>Steer, M.</creatorcontrib><creatorcontrib>Franzon, P.D.</creatorcontrib><title>Demystifying 3D ICs: the pros and cons of going vertical</title><title>IEEE design &amp; test of computers</title><addtitle>MDT</addtitle><description>This article provides a practical introduction to the design trade-offs of the currently available 3D IC technology options. It begins with an overview of techniques, such as wire bonding, microbumps, through vias, and contactless interconnection, comparing them in terms of vertical density and practical limits to their use. We then present a high-level discussion of the pros and cons of 3D technologies, with an analysis relating the number of transistors on a chip to the vertical interconnect density using estimates based on Rent's rule. Next, we provide a more detailed design example of inductively coupled interconnects, with measured results of a system fabricated in a 0.35-μm technology and an analysis of misalignment and crosstalk tolerances. Lastly, we present a case study of a fast Fourier transform (FFT) placed and routed in a 0.18-μm through-via silicon-on-insulator (SOI) technology, comparing the 3D design to a traditional 2D approach in terms of wire length and critical-path delay.</description><subject>Assembly</subject><subject>C.0.e System architectures</subject><subject>Delay</subject><subject>Density</subject><subject>Design engineering</subject><subject>Estimates</subject><subject>Fourier transforms</subject><subject>I/O and Data Communications</subject><subject>integration and modeling</subject><subject>Interconnection architectures</subject><subject>Microorganisms</subject><subject>Misalignment</subject><subject>Packaging</subject><subject>Parallel I/O</subject><subject>Placement and routing</subject><subject>Receivers</subject><subject>Routing</subject><subject>Routing and layout</subject><subject>Silicon on insulator technology</subject><subject>Stress</subject><subject>Studies</subject><subject>Three dimensional</subject><subject>Transmitters</subject><subject>Wafer bonding</subject><subject>Wire</subject><issn>0740-7475</issn><issn>2168-2356</issn><issn>1558-1918</issn><issn>2168-2364</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp90b1LAzEcxvEgCtbq5uYSHMTBq_nlPW7S-lKouNQ5pLmkXmnv9HIV-t-bo4Lg4JTlw0PyDULnQEYAxNy-TOYjSogYAZMHaABC6AIM6EM0IIqTQnEljtFJSitCCICUA6QnYbNLXRV3Vb3EbIKn43SHu_eAP9omYVeX2Dd1wk3Ey6YnX6HtKu_Wp-gounUKZz_nEL09PszHz8Xs9Wk6vp8VnkroishLRTiUngtOI3d6IbSSnAXlF95HiM4pzQEoeGeEoApMGRdRa2lKLjllQ3S13833-dyG1NlNlXxYr10dmm2yVCuqieAZXv8LgYCRhjJmMr38Q1fNtq3zM6wBSiQjpt-72SOfQ6Q2RPvRVhvX7vKS7XPbnNv2uW3OnfnFnlchhF8qeP4Awr4BwuN30A</recordid><startdate>200511</startdate><enddate>200511</enddate><creator>Davis, W.R.</creator><creator>Wilson, J.</creator><creator>Mick, S.</creator><creator>Xu, J.</creator><creator>Hua, H.</creator><creator>Mineo, C.</creator><creator>Sule, A.M.</creator><creator>Steer, M.</creator><creator>Franzon, P.D.</creator><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7U5</scope></search><sort><creationdate>200511</creationdate><title>Demystifying 3D ICs: the pros and cons of going vertical</title><author>Davis, W.R. ; Wilson, J. ; Mick, S. ; Xu, J. ; Hua, H. ; Mineo, C. ; Sule, A.M. ; Steer, M. ; Franzon, P.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-f4d7041dc4542f4a8b587643e7cbccf1faa7841121ca9552719dfbf8869d46423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Assembly</topic><topic>C.0.e System architectures</topic><topic>Delay</topic><topic>Density</topic><topic>Design engineering</topic><topic>Estimates</topic><topic>Fourier transforms</topic><topic>I/O and Data Communications</topic><topic>integration and modeling</topic><topic>Interconnection architectures</topic><topic>Microorganisms</topic><topic>Misalignment</topic><topic>Packaging</topic><topic>Parallel I/O</topic><topic>Placement and routing</topic><topic>Receivers</topic><topic>Routing</topic><topic>Routing and layout</topic><topic>Silicon on insulator technology</topic><topic>Stress</topic><topic>Studies</topic><topic>Three dimensional</topic><topic>Transmitters</topic><topic>Wafer bonding</topic><topic>Wire</topic><toplevel>online_resources</toplevel><creatorcontrib>Davis, W.R.</creatorcontrib><creatorcontrib>Wilson, J.</creatorcontrib><creatorcontrib>Mick, S.</creatorcontrib><creatorcontrib>Xu, J.</creatorcontrib><creatorcontrib>Hua, H.</creatorcontrib><creatorcontrib>Mineo, C.</creatorcontrib><creatorcontrib>Sule, A.M.</creatorcontrib><creatorcontrib>Steer, M.</creatorcontrib><creatorcontrib>Franzon, P.D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>IEEE design &amp; test of computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davis, W.R.</au><au>Wilson, J.</au><au>Mick, S.</au><au>Xu, J.</au><au>Hua, H.</au><au>Mineo, C.</au><au>Sule, A.M.</au><au>Steer, M.</au><au>Franzon, P.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Demystifying 3D ICs: the pros and cons of going vertical</atitle><jtitle>IEEE design &amp; test of computers</jtitle><stitle>MDT</stitle><date>2005-11</date><risdate>2005</risdate><volume>22</volume><issue>6</issue><spage>498</spage><epage>510</epage><pages>498-510</pages><issn>0740-7475</issn><issn>2168-2356</issn><eissn>1558-1918</eissn><eissn>2168-2364</eissn><coden>IDTCEC</coden><abstract>This article provides a practical introduction to the design trade-offs of the currently available 3D IC technology options. It begins with an overview of techniques, such as wire bonding, microbumps, through vias, and contactless interconnection, comparing them in terms of vertical density and practical limits to their use. We then present a high-level discussion of the pros and cons of 3D technologies, with an analysis relating the number of transistors on a chip to the vertical interconnect density using estimates based on Rent's rule. Next, we provide a more detailed design example of inductively coupled interconnects, with measured results of a system fabricated in a 0.35-μm technology and an analysis of misalignment and crosstalk tolerances. Lastly, we present a case study of a fast Fourier transform (FFT) placed and routed in a 0.18-μm through-via silicon-on-insulator (SOI) technology, comparing the 3D design to a traditional 2D approach in terms of wire length and critical-path delay.</abstract><cop>Los Alamitos</cop><pub>IEEE Computer Society</pub><doi>10.1109/MDT.2005.136</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0740-7475
ispartof IEEE design & test of computers, 2005-11, Vol.22 (6), p.498-510
issn 0740-7475
2168-2356
1558-1918
2168-2364
language eng
recordid cdi_crossref_primary_10_1109_MDT_2005_136
source IEEE Xplore (Online service)
subjects Assembly
C.0.e System architectures
Delay
Density
Design engineering
Estimates
Fourier transforms
I/O and Data Communications
integration and modeling
Interconnection architectures
Microorganisms
Misalignment
Packaging
Parallel I/O
Placement and routing
Receivers
Routing
Routing and layout
Silicon on insulator technology
Stress
Studies
Three dimensional
Transmitters
Wafer bonding
Wire
title Demystifying 3D ICs: the pros and cons of going vertical
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A22%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Demystifying%203D%20ICs:%20the%20pros%20and%20cons%20of%20going%20vertical&rft.jtitle=IEEE%20design%20&%20test%20of%20computers&rft.au=Davis,%20W.R.&rft.date=2005-11&rft.volume=22&rft.issue=6&rft.spage=498&rft.epage=510&rft.pages=498-510&rft.issn=0740-7475&rft.eissn=1558-1918&rft.coden=IDTCEC&rft_id=info:doi/10.1109/MDT.2005.136&rft_dat=%3Cproquest_cross%3E2543564491%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c261t-f4d7041dc4542f4a8b587643e7cbccf1faa7841121ca9552719dfbf8869d46423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912063094&rft_id=info:pmid/&rft_ieee_id=1541910&rfr_iscdi=true