Loading…
Eureka: Edge-Based Discovery of Training Data for Machine Learning
The generation of high-quality training data has become the key bottleneck in the use of deep learning across many domains. In this paper, we describe Eureka, an interactive system that leverages edge computing and early discard to greatly improve the productivity of experts in the construction of a...
Saved in:
Published in: | IEEE internet computing 2019-07, Vol.23 (4), p.35-42 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c263t-d664ba63537012ebe0d9549fb89d4f35908c971ca076d59f22c4e9de1fc03d203 |
---|---|
cites | cdi_FETCH-LOGICAL-c263t-d664ba63537012ebe0d9549fb89d4f35908c971ca076d59f22c4e9de1fc03d203 |
container_end_page | 42 |
container_issue | 4 |
container_start_page | 35 |
container_title | IEEE internet computing |
container_volume | 23 |
creator | Feng, Ziqiang George, Shilpa Harkes, Jan Klatzky, Roberta L. Satyanarayanan, Mahadev Pillai, Padmanabhan |
description | The generation of high-quality training data has become the key bottleneck in the use of deep learning across many domains. In this paper, we describe Eureka, an interactive system that leverages edge computing and early discard to greatly improve the productivity of experts in the construction of a labeled dataset. Our experimental results show that Eureka reduces the labeling effort needed to construct a training set by two orders of magnitude relative to a brute-force approach. |
doi_str_mv | 10.1109/MIC.2019.2892941 |
format | article |
fullrecord | <record><control><sourceid>crossref_CHZPO</sourceid><recordid>TN_cdi_crossref_primary_10_1109_MIC_2019_2892941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8611150</ieee_id><sourcerecordid>10_1109_MIC_2019_2892941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-d664ba63537012ebe0d9549fb89d4f35908c971ca076d59f22c4e9de1fc03d203</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKt7wU3-QMZ7k3kk7uy0aqHFTV0PaXJTx8eMJFXov--UFlfnwHksPsZuETJEMPfLeZ1JQJNJbaTJ8YyNcBABqPB88KCNqDTgJbtK6QMAtJY4YpPZb6RP-8BnfkNiYhN5Pm2T6_8o7ngf-Cratmu7DZ_areWhj3xp3XvbEV-QjYfkml0E-5Xo5qRj9vY0W9UvYvH6PK8fF8LJUm2FL8t8bUtVqApQ0prAmyI3Ya2Nz4MqDGhnKnQWqtIXJkjpcjKeMDhQXoIaMzj-utinFCk0P7H9tnHXIDQHBs3AoDkwaE4MhsndcdIS0X9dl4hYgNoDQCVWfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Eureka: Edge-Based Discovery of Training Data for Machine Learning</title><source>IEEE Xplore All Conference Series</source><creator>Feng, Ziqiang ; George, Shilpa ; Harkes, Jan ; Klatzky, Roberta L. ; Satyanarayanan, Mahadev ; Pillai, Padmanabhan</creator><creatorcontrib>Feng, Ziqiang ; George, Shilpa ; Harkes, Jan ; Klatzky, Roberta L. ; Satyanarayanan, Mahadev ; Pillai, Padmanabhan</creatorcontrib><description>The generation of high-quality training data has become the key bottleneck in the use of deep learning across many domains. In this paper, we describe Eureka, an interactive system that leverages edge computing and early discard to greatly improve the productivity of experts in the construction of a labeled dataset. Our experimental results show that Eureka reduces the labeling effort needed to construct a training set by two orders of magnitude relative to a brute-force approach.</description><identifier>ISSN: 1089-7801</identifier><identifier>EISSN: 1941-0131</identifier><identifier>DOI: 10.1109/MIC.2019.2892941</identifier><identifier>CODEN: IICOFX</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bandwidth ; Cloud computing ; Graphical user interfaces ; Support vector machines ; Training ; Training data</subject><ispartof>IEEE internet computing, 2019-07, Vol.23 (4), p.35-42</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-d664ba63537012ebe0d9549fb89d4f35908c971ca076d59f22c4e9de1fc03d203</citedby><cites>FETCH-LOGICAL-c263t-d664ba63537012ebe0d9549fb89d4f35908c971ca076d59f22c4e9de1fc03d203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8611150$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54555,54796,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8611150$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Feng, Ziqiang</creatorcontrib><creatorcontrib>George, Shilpa</creatorcontrib><creatorcontrib>Harkes, Jan</creatorcontrib><creatorcontrib>Klatzky, Roberta L.</creatorcontrib><creatorcontrib>Satyanarayanan, Mahadev</creatorcontrib><creatorcontrib>Pillai, Padmanabhan</creatorcontrib><title>Eureka: Edge-Based Discovery of Training Data for Machine Learning</title><title>IEEE internet computing</title><addtitle>MIC</addtitle><description>The generation of high-quality training data has become the key bottleneck in the use of deep learning across many domains. In this paper, we describe Eureka, an interactive system that leverages edge computing and early discard to greatly improve the productivity of experts in the construction of a labeled dataset. Our experimental results show that Eureka reduces the labeling effort needed to construct a training set by two orders of magnitude relative to a brute-force approach.</description><subject>Bandwidth</subject><subject>Cloud computing</subject><subject>Graphical user interfaces</subject><subject>Support vector machines</subject><subject>Training</subject><subject>Training data</subject><issn>1089-7801</issn><issn>1941-0131</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKt7wU3-QMZ7k3kk7uy0aqHFTV0PaXJTx8eMJFXov--UFlfnwHksPsZuETJEMPfLeZ1JQJNJbaTJ8YyNcBABqPB88KCNqDTgJbtK6QMAtJY4YpPZb6RP-8BnfkNiYhN5Pm2T6_8o7ngf-Cratmu7DZ_areWhj3xp3XvbEV-QjYfkml0E-5Xo5qRj9vY0W9UvYvH6PK8fF8LJUm2FL8t8bUtVqApQ0prAmyI3Ya2Nz4MqDGhnKnQWqtIXJkjpcjKeMDhQXoIaMzj-utinFCk0P7H9tnHXIDQHBs3AoDkwaE4MhsndcdIS0X9dl4hYgNoDQCVWfA</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Feng, Ziqiang</creator><creator>George, Shilpa</creator><creator>Harkes, Jan</creator><creator>Klatzky, Roberta L.</creator><creator>Satyanarayanan, Mahadev</creator><creator>Pillai, Padmanabhan</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201907</creationdate><title>Eureka: Edge-Based Discovery of Training Data for Machine Learning</title><author>Feng, Ziqiang ; George, Shilpa ; Harkes, Jan ; Klatzky, Roberta L. ; Satyanarayanan, Mahadev ; Pillai, Padmanabhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-d664ba63537012ebe0d9549fb89d4f35908c971ca076d59f22c4e9de1fc03d203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bandwidth</topic><topic>Cloud computing</topic><topic>Graphical user interfaces</topic><topic>Support vector machines</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Ziqiang</creatorcontrib><creatorcontrib>George, Shilpa</creatorcontrib><creatorcontrib>Harkes, Jan</creatorcontrib><creatorcontrib>Klatzky, Roberta L.</creatorcontrib><creatorcontrib>Satyanarayanan, Mahadev</creatorcontrib><creatorcontrib>Pillai, Padmanabhan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><jtitle>IEEE internet computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feng, Ziqiang</au><au>George, Shilpa</au><au>Harkes, Jan</au><au>Klatzky, Roberta L.</au><au>Satyanarayanan, Mahadev</au><au>Pillai, Padmanabhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eureka: Edge-Based Discovery of Training Data for Machine Learning</atitle><jtitle>IEEE internet computing</jtitle><stitle>MIC</stitle><date>2019-07</date><risdate>2019</risdate><volume>23</volume><issue>4</issue><spage>35</spage><epage>42</epage><pages>35-42</pages><issn>1089-7801</issn><eissn>1941-0131</eissn><coden>IICOFX</coden><abstract>The generation of high-quality training data has become the key bottleneck in the use of deep learning across many domains. In this paper, we describe Eureka, an interactive system that leverages edge computing and early discard to greatly improve the productivity of experts in the construction of a labeled dataset. Our experimental results show that Eureka reduces the labeling effort needed to construct a training set by two orders of magnitude relative to a brute-force approach.</abstract><pub>IEEE</pub><doi>10.1109/MIC.2019.2892941</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-7801 |
ispartof | IEEE internet computing, 2019-07, Vol.23 (4), p.35-42 |
issn | 1089-7801 1941-0131 |
language | eng |
recordid | cdi_crossref_primary_10_1109_MIC_2019_2892941 |
source | IEEE Xplore All Conference Series |
subjects | Bandwidth Cloud computing Graphical user interfaces Support vector machines Training Training data |
title | Eureka: Edge-Based Discovery of Training Data for Machine Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A47%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eureka:%20Edge-Based%20Discovery%20of%20Training%20Data%20for%20Machine%20Learning&rft.jtitle=IEEE%20internet%20computing&rft.au=Feng,%20Ziqiang&rft.date=2019-07&rft.volume=23&rft.issue=4&rft.spage=35&rft.epage=42&rft.pages=35-42&rft.issn=1089-7801&rft.eissn=1941-0131&rft.coden=IICOFX&rft_id=info:doi/10.1109/MIC.2019.2892941&rft_dat=%3Ccrossref_CHZPO%3E10_1109_MIC_2019_2892941%3C/crossref_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c263t-d664ba63537012ebe0d9549fb89d4f35908c971ca076d59f22c4e9de1fc03d203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8611150&rfr_iscdi=true |