Loading…
DEXTRA: A Fast Algorithm for Optimization Over Directed Graphs
This paper develops a fast distributed algorithm, termed DEXTRA, to solve the optimization problem when n agents reach agreement and collaboratively minimize the sum of their local objective functions over the network, where the communication between the agents is described by a directed graph. Exis...
Saved in:
Published in: | IEEE transactions on automatic control 2017-10, Vol.62 (10), p.4980-4993 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper develops a fast distributed algorithm, termed DEXTRA, to solve the optimization problem when n agents reach agreement and collaboratively minimize the sum of their local objective functions over the network, where the communication between the agents is described by a directed graph. Existing algorithms solve the problem restricted to directed graphs with convergence √ rates of O(ln k/ √k) for general convex objective functions and O(ln k/k) when the objective functions are strongly convex, where k is the number of iterations. We show that, with the appropriate step-size, DEXTRA converges at a linear rate O(τ k ) for 0 |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2017.2672698 |