Loading…

3D interferometric ISAR imaging of noncooperative targets

Inverse synthetic aperture radar (ISAR) images are frequently used in target classification and recognition applications. Nevertheless, the interpretation of ISAR images remains problematic for several reasons. One of these is the fact that the image plane cannot be defined by the user but instead d...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on aerospace and electronic systems 2014-10, Vol.50 (4), p.3102-3114
Main Authors: Martorella, Marco, Stagliano, Daniele, Salvetti, Federica, Battisti, Nicola
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Inverse synthetic aperture radar (ISAR) images are frequently used in target classification and recognition applications. Nevertheless, the interpretation of ISAR images remains problematic for several reasons. One of these is the fact that the image plane cannot be defined by the user but instead depends on the target's own motions and on its relative position with respect to the radar. In order to overcome the problem of interpreting two-dimensional (2D) ISAR images, a method for three-dimensional (3D) reconstruction of moving targets is presented. This method is based on the use of a dual interferometric ISAR system. The interferometric phases measured from two orthogonal baselines are used to jointly estimate the target's effective rotation vector and the heights of the scattering centers with respect to the image plane. The scattering center extraction from the ISAR image is performed by applying a multichannel CLEAN technique. Finally, a 3D image of the moving target is reconstructed from the 3D spatial coordinates of the scattering centers. The effectiveness and robustness of the proposed algorithm is first proven theoretically and then tested against several radar-target scenarios as well as in the presence of noise.
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2014.130210