Loading…

Loop star basis functions and a robust preconditioner for EFIE scattering problems

An electric field integral equation (EFIE) formulation using the loop-star basis functions has been developed for modeling plane wave scattering from perfect conducting objects. A stability analysis at the DC limit shows that the use of the Rao-Wilton-Glisson (RWG) basis functions results in a singu...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on antennas and propagation 2003-08, Vol.51 (8), p.1855-1863
Main Authors: Jin-Fa Lee, Lee, R., Burkholder, R.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An electric field integral equation (EFIE) formulation using the loop-star basis functions has been developed for modeling plane wave scattering from perfect conducting objects. A stability analysis at the DC limit shows that the use of the Rao-Wilton-Glisson (RWG) basis functions results in a singular matrix operator. However, the use of the loop-star basis functions results in a well-conditioned matrix. Moreover, a preconditioner constructed from a two-step process, based on near interactions and an incomplete factorization with a heuristic drop strategy, has been proposed in conjunction with the conjugate gradient method to solve the resulting matrix equation. The approach is shown to be effective for resolving both the low frequency instability and the bad conditioning of the EFIE method. The computational complexity of the proposed approach is shown to be O(N/sup 2/).
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2003.814736