Loading…

On Loss Functions for Supervised Monaural Time-Domain Speech Enhancement

Many deep learning-based speech enhancement algorithms are designed to minimize the mean-square error (MSE) in some transform domain between a predicted and a target speech signal. However, optimizing for MSE does not necessarily guarantee high speech quality or intelligibility, which is the ultimat...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ACM transactions on audio, speech, and language processing speech, and language processing, 2020, Vol.28, p.825-838
Main Authors: Kolbaek, Morten, Tan, Zheng-Hua, Jensen, Soren Holdt, Jensen, Jesper
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Many deep learning-based speech enhancement algorithms are designed to minimize the mean-square error (MSE) in some transform domain between a predicted and a target speech signal. However, optimizing for MSE does not necessarily guarantee high speech quality or intelligibility, which is the ultimate goal of many speech enhancement algorithms. Additionally, only little is known about the impact of the loss function on the emerging class of time-domain deep learning-based speech enhancement systems. We study how popular loss functions influence the performance of time-domain deep learning-based speech enhancement systems. First, we demonstrate that perceptually inspired loss functions might be advantageous over classical loss functions like MSE. Furthermore, we show that the learning rate is a crucial design parameter even for adaptive gradient-based optimizers, which has been generally overlooked in the literature. Also, we found that waveform matching performance metrics must be used with caution as they in certain situations can fail completely. Finally, we show that a loss function based on scale-invariant signal-to-distortion ratio (SI-SDR) achieves good general performance across a range of popular speech enhancement evaluation metrics, which suggests that SI-SDR is a good candidate as a general-purpose loss function for speech enhancement systems.
ISSN:2329-9290
2329-9304
DOI:10.1109/TASLP.2020.2968738