Loading…
Multilabel Region Classification and Semantic Linking for Colon Segmentation in CT Colonography
Accurate and automatic colon segmentation from CT images is a crucial step of many clinical applications in CT colonography, including computer-aided detection (CAD) of colon polyps, 3-D virtual flythrough of the colon, and prone/supine registration. However, the existence of adjacent air-filled org...
Saved in:
Published in: | IEEE transactions on biomedical engineering 2015-03, Vol.62 (3), p.948-959 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Accurate and automatic colon segmentation from CT images is a crucial step of many clinical applications in CT colonography, including computer-aided detection (CAD) of colon polyps, 3-D virtual flythrough of the colon, and prone/supine registration. However, the existence of adjacent air-filled organs such as the lung, stomach, and small intestine, and the collapse of the colon due to poor insufflation, render accurate segmentation of the colon a difficult problem. Extra-colonic components can be categorized into two types based on their 3-D connection to the colon: detached and attached extracolonic components (DEC and AEC, respectively). In this paper, we propose graph inference methods to remove extracolonic components to achieve a high quality segmentation. We first decompose each 3-D air-filled object into a set of 3-D regions. A classifier trained with region-level features can be used to identify the colon regions from noncolon regions. After removing obvious DEC, we remove the remaining DEC by modeling the global anatomic structure with an a priori topological constraint and solving a graph inference problem using semantic information provided by a multiclass classifier. Finally, we remove AEC by modeling regions within each 3-D object with a hierarchical conditional random field, solved by graph cut. Experimental results demonstrate that our method outperforms a purely discriminative learning method in detecting true colon regions, while decreasing extra-colonic components in challenging clinical data that includes collapsed cases. |
---|---|
ISSN: | 0018-9294 1558-2531 |
DOI: | 10.1109/TBME.2014.2374355 |