Loading…
Continuous Emission Ultrasound: A New Paradigm to Ultrafast Ultrasound Imaging
Current imaging techniques in echography rely on the pulse-echo (PE) paradigm which provides a straight-forward access to the in-depth structure of tissues. They inherently face two major challenges: the limitation of the pulse repetition frequency, directly linked to the imaging framerate, and, due...
Saved in:
Published in: | IEEE transactions on biomedical engineering 2024-07, Vol.PP, p.1-14 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Current imaging techniques in echography rely on the pulse-echo (PE) paradigm which provides a straight-forward access to the in-depth structure of tissues. They inherently face two major challenges: the limitation of the pulse repetition frequency, directly linked to the imaging framerate, and, due to the emission scheme, their blindness to the phenomena that happen in the medium during the majority of the acquisition time. To overcome these limitations, we propose a new paradigm for ultrasound imaging, denoted by continuous emission ultrasound imaging (CEUI) [1], for a single input single output (SISO) device. A continuous insonification of the medium is done by the probe using a coded waveform inspired from the radar and sonar literature. A framework coupling a sliding window approach (SWA) and pulse compression methods processes the recorded echoes to rebuild a motion-mode (M-mode) image from the medium with a high temporal resolution compared to state-of-the-art ultrafast imaging methods. A study on realistic simulated data, with regards to the motion of the medium, has been carried out and, achieved results assess an unequivocal improvement of the slow time frequency up to, at least, two orders of magnitude compared to ultrafast US imaging methods. This enhancement leads, therefore, to a ten times improvement in the temporal separability of the imaging system. In addition, it demonstrates the capability of CEUI to catch relatively short and quick events, in comparison to the imaging period of PE methods, at any instant of the acquisition. |
---|---|
ISSN: | 0018-9294 1558-2531 1558-2531 |
DOI: | 10.1109/TBME.2024.3427309 |