Loading…

System-Level Power Management Using Online Learning

In this paper, we propose a novel online-learning algorithm for system-level power management. We formulate both dynamic power management (DPM) and dynamic voltage-frequency scaling problems as one of workload characterization and selection and solve them using our algorithm. The selection is done a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on computer-aided design of integrated circuits and systems 2009-05, Vol.28 (5), p.676-689
Main Authors: Dhiman, G., Rosing, T.S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we propose a novel online-learning algorithm for system-level power management. We formulate both dynamic power management (DPM) and dynamic voltage-frequency scaling problems as one of workload characterization and selection and solve them using our algorithm. The selection is done among a set of experts, which refers to a set of DPM policies and voltage-frequency settings, leveraging the fact that different experts outperform each other under different workloads and device leakage characteristics. The online-learning algorithm adapts to changes in the characteristics and guarantees fast convergence to the best-performing expert. In our evaluation, we perform experiments on a hard disk drive (HDD) and Intel PXA27x core (CPU) with real-life workloads. Our results show that our algorithm adapts really well and achieves an overall performance comparable to the best-performing expert at any point in time, with energy savings as high as 61% and 49% for HDD and CPU, respectively. Moreover, it is extremely lightweight and has negligible overhead.
ISSN:0278-0070
1937-4151
DOI:10.1109/TCAD.2009.2015740