Loading…
System-Level Power Management Using Online Learning
In this paper, we propose a novel online-learning algorithm for system-level power management. We formulate both dynamic power management (DPM) and dynamic voltage-frequency scaling problems as one of workload characterization and selection and solve them using our algorithm. The selection is done a...
Saved in:
Published in: | IEEE transactions on computer-aided design of integrated circuits and systems 2009-05, Vol.28 (5), p.676-689 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c357t-ee51483ec3d55e39fdd7ebd3ed5d7acfe44913e11cbef68223900624e462ffb83 |
---|---|
cites | cdi_FETCH-LOGICAL-c357t-ee51483ec3d55e39fdd7ebd3ed5d7acfe44913e11cbef68223900624e462ffb83 |
container_end_page | 689 |
container_issue | 5 |
container_start_page | 676 |
container_title | IEEE transactions on computer-aided design of integrated circuits and systems |
container_volume | 28 |
creator | Dhiman, G. Rosing, T.S. |
description | In this paper, we propose a novel online-learning algorithm for system-level power management. We formulate both dynamic power management (DPM) and dynamic voltage-frequency scaling problems as one of workload characterization and selection and solve them using our algorithm. The selection is done among a set of experts, which refers to a set of DPM policies and voltage-frequency settings, leveraging the fact that different experts outperform each other under different workloads and device leakage characteristics. The online-learning algorithm adapts to changes in the characteristics and guarantees fast convergence to the best-performing expert. In our evaluation, we perform experiments on a hard disk drive (HDD) and Intel PXA27x core (CPU) with real-life workloads. Our results show that our algorithm adapts really well and achieves an overall performance comparable to the best-performing expert at any point in time, with energy savings as high as 61% and 49% for HDD and CPU, respectively. Moreover, it is extremely lightweight and has negligible overhead. |
doi_str_mv | 10.1109/TCAD.2009.2015740 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCAD_2009_2015740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4838819</ieee_id><sourcerecordid>2294990091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-ee51483ec3d55e39fdd7ebd3ed5d7acfe44913e11cbef68223900624e462ffb83</originalsourceid><addsrcrecordid>eNp9kUtLw0AQgBdRsFZ_gHgJXvSSurOPbPZY6hMiFWzPS5pMSkqyqbup0n_vhooHD15mGPhmhvmGkEugEwCq7xaz6f2EUapDAKkEPSIj0FzFAiQckxFlKo0pVfSUnHm_oRSEZHpE-Pve99jGGX5iE711X-ii19zma2zR9tHS13YdzW1TW4wyzJ0N9Tk5qfLG48VPHpPl48Ni9hxn86eX2TSLCy5VHyNKECnHgpdSItdVWSpclRxLWaq8qFAIDRwBihVWScoY15QmTKBIWFWtUj4mN4e5W9d97ND3pq19gU2TW-x23qRKUlCcJoG8_ZeERDAOIuE6oNd_0E23czbcYdLgLexWwzw4QIXrvHdYma2r29ztDVAz-DaDbzP4Nj--Q8_VoadGxF8-CEjT8IhvSxx6DQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857446276</pqid></control><display><type>article</type><title>System-Level Power Management Using Online Learning</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Dhiman, G. ; Rosing, T.S.</creator><creatorcontrib>Dhiman, G. ; Rosing, T.S.</creatorcontrib><description>In this paper, we propose a novel online-learning algorithm for system-level power management. We formulate both dynamic power management (DPM) and dynamic voltage-frequency scaling problems as one of workload characterization and selection and solve them using our algorithm. The selection is done among a set of experts, which refers to a set of DPM policies and voltage-frequency settings, leveraging the fact that different experts outperform each other under different workloads and device leakage characteristics. The online-learning algorithm adapts to changes in the characteristics and guarantees fast convergence to the best-performing expert. In our evaluation, we perform experiments on a hard disk drive (HDD) and Intel PXA27x core (CPU) with real-life workloads. Our results show that our algorithm adapts really well and achieves an overall performance comparable to the best-performing expert at any point in time, with energy savings as high as 61% and 49% for HDD and CPU, respectively. Moreover, it is extremely lightweight and has negligible overhead.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2009.2015740</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Batteries ; Central processing units ; Convergence ; Devices ; Disk drives ; Dynamic voltage frequency scaling ; Dynamic voltage scaling ; Dynamical systems ; Dynamics ; Energy consumption ; Energy management ; energy-performance trade-off ; Frequency ; Hard disks ; Learning ; Management ; online learning ; Performance evaluation ; Policies ; Power management ; Power system management ; Stochastic processes ; Workload</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2009-05, Vol.28 (5), p.676-689</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-ee51483ec3d55e39fdd7ebd3ed5d7acfe44913e11cbef68223900624e462ffb83</citedby><cites>FETCH-LOGICAL-c357t-ee51483ec3d55e39fdd7ebd3ed5d7acfe44913e11cbef68223900624e462ffb83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4838819$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Dhiman, G.</creatorcontrib><creatorcontrib>Rosing, T.S.</creatorcontrib><title>System-Level Power Management Using Online Learning</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>In this paper, we propose a novel online-learning algorithm for system-level power management. We formulate both dynamic power management (DPM) and dynamic voltage-frequency scaling problems as one of workload characterization and selection and solve them using our algorithm. The selection is done among a set of experts, which refers to a set of DPM policies and voltage-frequency settings, leveraging the fact that different experts outperform each other under different workloads and device leakage characteristics. The online-learning algorithm adapts to changes in the characteristics and guarantees fast convergence to the best-performing expert. In our evaluation, we perform experiments on a hard disk drive (HDD) and Intel PXA27x core (CPU) with real-life workloads. Our results show that our algorithm adapts really well and achieves an overall performance comparable to the best-performing expert at any point in time, with energy savings as high as 61% and 49% for HDD and CPU, respectively. Moreover, it is extremely lightweight and has negligible overhead.</description><subject>Algorithms</subject><subject>Batteries</subject><subject>Central processing units</subject><subject>Convergence</subject><subject>Devices</subject><subject>Disk drives</subject><subject>Dynamic voltage frequency scaling</subject><subject>Dynamic voltage scaling</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Energy consumption</subject><subject>Energy management</subject><subject>energy-performance trade-off</subject><subject>Frequency</subject><subject>Hard disks</subject><subject>Learning</subject><subject>Management</subject><subject>online learning</subject><subject>Performance evaluation</subject><subject>Policies</subject><subject>Power management</subject><subject>Power system management</subject><subject>Stochastic processes</subject><subject>Workload</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kUtLw0AQgBdRsFZ_gHgJXvSSurOPbPZY6hMiFWzPS5pMSkqyqbup0n_vhooHD15mGPhmhvmGkEugEwCq7xaz6f2EUapDAKkEPSIj0FzFAiQckxFlKo0pVfSUnHm_oRSEZHpE-Pve99jGGX5iE711X-ii19zma2zR9tHS13YdzW1TW4wyzJ0N9Tk5qfLG48VPHpPl48Ni9hxn86eX2TSLCy5VHyNKECnHgpdSItdVWSpclRxLWaq8qFAIDRwBihVWScoY15QmTKBIWFWtUj4mN4e5W9d97ND3pq19gU2TW-x23qRKUlCcJoG8_ZeERDAOIuE6oNd_0E23czbcYdLgLexWwzw4QIXrvHdYma2r29ztDVAz-DaDbzP4Nj--Q8_VoadGxF8-CEjT8IhvSxx6DQ</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Dhiman, G.</creator><creator>Rosing, T.S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090501</creationdate><title>System-Level Power Management Using Online Learning</title><author>Dhiman, G. ; Rosing, T.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-ee51483ec3d55e39fdd7ebd3ed5d7acfe44913e11cbef68223900624e462ffb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Batteries</topic><topic>Central processing units</topic><topic>Convergence</topic><topic>Devices</topic><topic>Disk drives</topic><topic>Dynamic voltage frequency scaling</topic><topic>Dynamic voltage scaling</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Energy consumption</topic><topic>Energy management</topic><topic>energy-performance trade-off</topic><topic>Frequency</topic><topic>Hard disks</topic><topic>Learning</topic><topic>Management</topic><topic>online learning</topic><topic>Performance evaluation</topic><topic>Policies</topic><topic>Power management</topic><topic>Power system management</topic><topic>Stochastic processes</topic><topic>Workload</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhiman, G.</creatorcontrib><creatorcontrib>Rosing, T.S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhiman, G.</au><au>Rosing, T.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>System-Level Power Management Using Online Learning</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2009-05-01</date><risdate>2009</risdate><volume>28</volume><issue>5</issue><spage>676</spage><epage>689</epage><pages>676-689</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>In this paper, we propose a novel online-learning algorithm for system-level power management. We formulate both dynamic power management (DPM) and dynamic voltage-frequency scaling problems as one of workload characterization and selection and solve them using our algorithm. The selection is done among a set of experts, which refers to a set of DPM policies and voltage-frequency settings, leveraging the fact that different experts outperform each other under different workloads and device leakage characteristics. The online-learning algorithm adapts to changes in the characteristics and guarantees fast convergence to the best-performing expert. In our evaluation, we perform experiments on a hard disk drive (HDD) and Intel PXA27x core (CPU) with real-life workloads. Our results show that our algorithm adapts really well and achieves an overall performance comparable to the best-performing expert at any point in time, with energy savings as high as 61% and 49% for HDD and CPU, respectively. Moreover, it is extremely lightweight and has negligible overhead.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2009.2015740</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0070 |
ispartof | IEEE transactions on computer-aided design of integrated circuits and systems, 2009-05, Vol.28 (5), p.676-689 |
issn | 0278-0070 1937-4151 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCAD_2009_2015740 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Batteries Central processing units Convergence Devices Disk drives Dynamic voltage frequency scaling Dynamic voltage scaling Dynamical systems Dynamics Energy consumption Energy management energy-performance trade-off Frequency Hard disks Learning Management online learning Performance evaluation Policies Power management Power system management Stochastic processes Workload |
title | System-Level Power Management Using Online Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A35%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=System-Level%20Power%20Management%20Using%20Online%20Learning&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Dhiman,%20G.&rft.date=2009-05-01&rft.volume=28&rft.issue=5&rft.spage=676&rft.epage=689&rft.pages=676-689&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2009.2015740&rft_dat=%3Cproquest_cross%3E2294990091%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-ee51483ec3d55e39fdd7ebd3ed5d7acfe44913e11cbef68223900624e462ffb83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=857446276&rft_id=info:pmid/&rft_ieee_id=4838819&rfr_iscdi=true |