Loading…

System-Level Power Management Using Online Learning

In this paper, we propose a novel online-learning algorithm for system-level power management. We formulate both dynamic power management (DPM) and dynamic voltage-frequency scaling problems as one of workload characterization and selection and solve them using our algorithm. The selection is done a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on computer-aided design of integrated circuits and systems 2009-05, Vol.28 (5), p.676-689
Main Authors: Dhiman, G., Rosing, T.S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c357t-ee51483ec3d55e39fdd7ebd3ed5d7acfe44913e11cbef68223900624e462ffb83
cites cdi_FETCH-LOGICAL-c357t-ee51483ec3d55e39fdd7ebd3ed5d7acfe44913e11cbef68223900624e462ffb83
container_end_page 689
container_issue 5
container_start_page 676
container_title IEEE transactions on computer-aided design of integrated circuits and systems
container_volume 28
creator Dhiman, G.
Rosing, T.S.
description In this paper, we propose a novel online-learning algorithm for system-level power management. We formulate both dynamic power management (DPM) and dynamic voltage-frequency scaling problems as one of workload characterization and selection and solve them using our algorithm. The selection is done among a set of experts, which refers to a set of DPM policies and voltage-frequency settings, leveraging the fact that different experts outperform each other under different workloads and device leakage characteristics. The online-learning algorithm adapts to changes in the characteristics and guarantees fast convergence to the best-performing expert. In our evaluation, we perform experiments on a hard disk drive (HDD) and Intel PXA27x core (CPU) with real-life workloads. Our results show that our algorithm adapts really well and achieves an overall performance comparable to the best-performing expert at any point in time, with energy savings as high as 61% and 49% for HDD and CPU, respectively. Moreover, it is extremely lightweight and has negligible overhead.
doi_str_mv 10.1109/TCAD.2009.2015740
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCAD_2009_2015740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4838819</ieee_id><sourcerecordid>2294990091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-ee51483ec3d55e39fdd7ebd3ed5d7acfe44913e11cbef68223900624e462ffb83</originalsourceid><addsrcrecordid>eNp9kUtLw0AQgBdRsFZ_gHgJXvSSurOPbPZY6hMiFWzPS5pMSkqyqbup0n_vhooHD15mGPhmhvmGkEugEwCq7xaz6f2EUapDAKkEPSIj0FzFAiQckxFlKo0pVfSUnHm_oRSEZHpE-Pve99jGGX5iE711X-ii19zma2zR9tHS13YdzW1TW4wyzJ0N9Tk5qfLG48VPHpPl48Ni9hxn86eX2TSLCy5VHyNKECnHgpdSItdVWSpclRxLWaq8qFAIDRwBihVWScoY15QmTKBIWFWtUj4mN4e5W9d97ND3pq19gU2TW-x23qRKUlCcJoG8_ZeERDAOIuE6oNd_0E23czbcYdLgLexWwzw4QIXrvHdYma2r29ztDVAz-DaDbzP4Nj--Q8_VoadGxF8-CEjT8IhvSxx6DQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857446276</pqid></control><display><type>article</type><title>System-Level Power Management Using Online Learning</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Dhiman, G. ; Rosing, T.S.</creator><creatorcontrib>Dhiman, G. ; Rosing, T.S.</creatorcontrib><description>In this paper, we propose a novel online-learning algorithm for system-level power management. We formulate both dynamic power management (DPM) and dynamic voltage-frequency scaling problems as one of workload characterization and selection and solve them using our algorithm. The selection is done among a set of experts, which refers to a set of DPM policies and voltage-frequency settings, leveraging the fact that different experts outperform each other under different workloads and device leakage characteristics. The online-learning algorithm adapts to changes in the characteristics and guarantees fast convergence to the best-performing expert. In our evaluation, we perform experiments on a hard disk drive (HDD) and Intel PXA27x core (CPU) with real-life workloads. Our results show that our algorithm adapts really well and achieves an overall performance comparable to the best-performing expert at any point in time, with energy savings as high as 61% and 49% for HDD and CPU, respectively. Moreover, it is extremely lightweight and has negligible overhead.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2009.2015740</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Batteries ; Central processing units ; Convergence ; Devices ; Disk drives ; Dynamic voltage frequency scaling ; Dynamic voltage scaling ; Dynamical systems ; Dynamics ; Energy consumption ; Energy management ; energy-performance trade-off ; Frequency ; Hard disks ; Learning ; Management ; online learning ; Performance evaluation ; Policies ; Power management ; Power system management ; Stochastic processes ; Workload</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2009-05, Vol.28 (5), p.676-689</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-ee51483ec3d55e39fdd7ebd3ed5d7acfe44913e11cbef68223900624e462ffb83</citedby><cites>FETCH-LOGICAL-c357t-ee51483ec3d55e39fdd7ebd3ed5d7acfe44913e11cbef68223900624e462ffb83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4838819$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Dhiman, G.</creatorcontrib><creatorcontrib>Rosing, T.S.</creatorcontrib><title>System-Level Power Management Using Online Learning</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>In this paper, we propose a novel online-learning algorithm for system-level power management. We formulate both dynamic power management (DPM) and dynamic voltage-frequency scaling problems as one of workload characterization and selection and solve them using our algorithm. The selection is done among a set of experts, which refers to a set of DPM policies and voltage-frequency settings, leveraging the fact that different experts outperform each other under different workloads and device leakage characteristics. The online-learning algorithm adapts to changes in the characteristics and guarantees fast convergence to the best-performing expert. In our evaluation, we perform experiments on a hard disk drive (HDD) and Intel PXA27x core (CPU) with real-life workloads. Our results show that our algorithm adapts really well and achieves an overall performance comparable to the best-performing expert at any point in time, with energy savings as high as 61% and 49% for HDD and CPU, respectively. Moreover, it is extremely lightweight and has negligible overhead.</description><subject>Algorithms</subject><subject>Batteries</subject><subject>Central processing units</subject><subject>Convergence</subject><subject>Devices</subject><subject>Disk drives</subject><subject>Dynamic voltage frequency scaling</subject><subject>Dynamic voltage scaling</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Energy consumption</subject><subject>Energy management</subject><subject>energy-performance trade-off</subject><subject>Frequency</subject><subject>Hard disks</subject><subject>Learning</subject><subject>Management</subject><subject>online learning</subject><subject>Performance evaluation</subject><subject>Policies</subject><subject>Power management</subject><subject>Power system management</subject><subject>Stochastic processes</subject><subject>Workload</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kUtLw0AQgBdRsFZ_gHgJXvSSurOPbPZY6hMiFWzPS5pMSkqyqbup0n_vhooHD15mGPhmhvmGkEugEwCq7xaz6f2EUapDAKkEPSIj0FzFAiQckxFlKo0pVfSUnHm_oRSEZHpE-Pve99jGGX5iE711X-ii19zma2zR9tHS13YdzW1TW4wyzJ0N9Tk5qfLG48VPHpPl48Ni9hxn86eX2TSLCy5VHyNKECnHgpdSItdVWSpclRxLWaq8qFAIDRwBihVWScoY15QmTKBIWFWtUj4mN4e5W9d97ND3pq19gU2TW-x23qRKUlCcJoG8_ZeERDAOIuE6oNd_0E23czbcYdLgLexWwzw4QIXrvHdYma2r29ztDVAz-DaDbzP4Nj--Q8_VoadGxF8-CEjT8IhvSxx6DQ</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Dhiman, G.</creator><creator>Rosing, T.S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090501</creationdate><title>System-Level Power Management Using Online Learning</title><author>Dhiman, G. ; Rosing, T.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-ee51483ec3d55e39fdd7ebd3ed5d7acfe44913e11cbef68223900624e462ffb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Batteries</topic><topic>Central processing units</topic><topic>Convergence</topic><topic>Devices</topic><topic>Disk drives</topic><topic>Dynamic voltage frequency scaling</topic><topic>Dynamic voltage scaling</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Energy consumption</topic><topic>Energy management</topic><topic>energy-performance trade-off</topic><topic>Frequency</topic><topic>Hard disks</topic><topic>Learning</topic><topic>Management</topic><topic>online learning</topic><topic>Performance evaluation</topic><topic>Policies</topic><topic>Power management</topic><topic>Power system management</topic><topic>Stochastic processes</topic><topic>Workload</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhiman, G.</creatorcontrib><creatorcontrib>Rosing, T.S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhiman, G.</au><au>Rosing, T.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>System-Level Power Management Using Online Learning</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2009-05-01</date><risdate>2009</risdate><volume>28</volume><issue>5</issue><spage>676</spage><epage>689</epage><pages>676-689</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>In this paper, we propose a novel online-learning algorithm for system-level power management. We formulate both dynamic power management (DPM) and dynamic voltage-frequency scaling problems as one of workload characterization and selection and solve them using our algorithm. The selection is done among a set of experts, which refers to a set of DPM policies and voltage-frequency settings, leveraging the fact that different experts outperform each other under different workloads and device leakage characteristics. The online-learning algorithm adapts to changes in the characteristics and guarantees fast convergence to the best-performing expert. In our evaluation, we perform experiments on a hard disk drive (HDD) and Intel PXA27x core (CPU) with real-life workloads. Our results show that our algorithm adapts really well and achieves an overall performance comparable to the best-performing expert at any point in time, with energy savings as high as 61% and 49% for HDD and CPU, respectively. Moreover, it is extremely lightweight and has negligible overhead.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2009.2015740</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0278-0070
ispartof IEEE transactions on computer-aided design of integrated circuits and systems, 2009-05, Vol.28 (5), p.676-689
issn 0278-0070
1937-4151
language eng
recordid cdi_crossref_primary_10_1109_TCAD_2009_2015740
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Batteries
Central processing units
Convergence
Devices
Disk drives
Dynamic voltage frequency scaling
Dynamic voltage scaling
Dynamical systems
Dynamics
Energy consumption
Energy management
energy-performance trade-off
Frequency
Hard disks
Learning
Management
online learning
Performance evaluation
Policies
Power management
Power system management
Stochastic processes
Workload
title System-Level Power Management Using Online Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A35%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=System-Level%20Power%20Management%20Using%20Online%20Learning&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Dhiman,%20G.&rft.date=2009-05-01&rft.volume=28&rft.issue=5&rft.spage=676&rft.epage=689&rft.pages=676-689&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2009.2015740&rft_dat=%3Cproquest_cross%3E2294990091%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-ee51483ec3d55e39fdd7ebd3ed5d7acfe44913e11cbef68223900624e462ffb83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=857446276&rft_id=info:pmid/&rft_ieee_id=4838819&rfr_iscdi=true