Loading…

Bayesian Data Fusion of Gene Expression and Histone Modification Profiles for Inference of Gene Regulatory Network

Accurately reconstructing gene regulatory networks (GRNs) from high-throughput gene expression data has been a major challenge in systems biology for decades. Many approaches have been proposed to solve this problem. However, there is still much room for the improvement of GRN inference. Integrating...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ACM transactions on computational biology and bioinformatics 2020-03, Vol.17 (2), p.516-525
Main Authors: Chen, Haifen, Maduranga, D. A. K., Mundra, Piyushkumar A., Zheng, Jie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accurately reconstructing gene regulatory networks (GRNs) from high-throughput gene expression data has been a major challenge in systems biology for decades. Many approaches have been proposed to solve this problem. However, there is still much room for the improvement of GRN inference. Integrating data from different sources is a promising strategy. Epigenetic modifications have a close relationship with gene regulation. Hence, epigenetic data such as histone modification profiles can provide useful information for uncovering regulatory interactions between genes. In this paper, we propose a method to integrate epigenetic data into the inference of GRNs. In particular, a dynamic Bayesian network (DBN) is employed to infer gene regulations from time-series gene expression data. Epigenetic data (histone modification profiles here) are integrated into the prior probability distribution of the Bayesian model. Our method has been validated on both synthetic and real datasets. Experimental results show that the integration of epigenetic data can significantly improve the performance of GRN inference. As more epigenetic datasets become available, our method would be useful for elucidating the gene regulatory mechanisms driving various cellular activities. The source code and testing datasets are available at https://github.com/Zheng-Lab/MetaGRN/tree/master/histonePrior .
ISSN:1545-5963
1557-9964
DOI:10.1109/TCBB.2018.2869590