Loading…
New Algorithms for Encoding, Learning and Classification of fMRI Data in a Spiking Neural Network Architecture: A Case on Modeling and Understanding of Dynamic Cognitive Processes
This paper argues that, the third generation of neural networks-the spiking neural networks (SNNs), can be used to model dynamic, spatio-temporal, cognitive brain processes measured as functional magnetic resonance imaging (fMRI) data. This paper proposes a novel method based on the NeuCube SNN arch...
Saved in:
Published in: | IEEE transactions on cognitive and developmental systems 2017-12, Vol.9 (4), p.293-303 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper argues that, the third generation of neural networks-the spiking neural networks (SNNs), can be used to model dynamic, spatio-temporal, cognitive brain processes measured as functional magnetic resonance imaging (fMRI) data. This paper proposes a novel method based on the NeuCube SNN architecture for which the following new algorithms are introduced: fMRI data encoding into spike sequences; deep unsupervised learning of fMRI data in a 3-D SNN reservoir; classification of cognitive states; and connectivity visualization and analysis for the purpose of understanding cognitive dynamics. The method is illustrated on two case studies of cognitive data modeling from a benchmark fMRI data set of seeing a picture versus reading a sentence. |
---|---|
ISSN: | 2379-8920 2379-8939 |
DOI: | 10.1109/TCDS.2016.2636291 |