Loading…

Exploiting Full-Duplex Receivers for Achieving Secret Communications in Multiuser MISO Networks

We consider a broadcast channel in which a multi-antenna transmitter (Alice) sends K confidential information signals to K legitimate users (Bobs) in the presence of L eavesdroppers (Eves). Alice uses multiple-input multiple-output (MIMO) precoding to generate the information signals along with her...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on communications 2017-02, Vol.65 (2), p.956-968
Main Authors: Akgun, Berk, Koyluoglu, Onur Ozan, Krunz, Marwan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider a broadcast channel in which a multi-antenna transmitter (Alice) sends K confidential information signals to K legitimate users (Bobs) in the presence of L eavesdroppers (Eves). Alice uses multiple-input multiple-output (MIMO) precoding to generate the information signals along with her own (Tx-based) friendly jamming (FJ). Interference at each Bob is removed by MIMO zero-forcing. This, however, leaves a "vulnerability region" around each Bob, which can be exploited by a nearby Eve. We address this problem by augmenting Tx-based FJ (TxFJ) with Rx-based FJ (RxFJ), generated by each Bob. Specifically, each Bob uses self-interference suppression to transmit a friendly jamming signal, while simultaneously receiving an information signal over the same channel. We minimize the powers allocated to the information, TxFJ, and RxFJ signals under given guarantees on the individual secrecy rate for each Bob. The problem is solved for the cases when the eavesdropper's channel state information is known/unknown. Simulations show the effectiveness of the proposed solution. Furthermore, we discuss how to schedule transmissions when the rate requirements need to be satisfied on average rather than instantaneously. Under special cases, a scheduling algorithm that serves only the strongest receivers is shown to outperform the one that schedules all receivers.
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2016.2641949