Loading…
A 49.5 mW Multi-Scale Linear Quantized Online Learning Processor for Real-Time Adaptive Object Detection
Online training is essential to maintain a high object detection (OD) in various environments. However, additional computation workload, EMA, and high bit precision is the problem of conventional online learning scheme on mobile devices. Therefore, a low power real-time online learning OD processor...
Saved in:
Published in: | IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2022-05, Vol.69 (5), p.2443-2447 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Online training is essential to maintain a high object detection (OD) in various environments. However, additional computation workload, EMA, and high bit precision is the problem of conventional online learning scheme on mobile devices. Therefore, a low power real-time online learning OD processor is proposed with three key features. First, multi-scale linear quantization (MSLQ) and MSLQ-aware PE structure are proposed for low-bit computation. Second, channel-wise gradient skipping is proposed to reduce computation and EMA based on temporal correlation. These schemes reduce ~56% of computation burden and ~30% of EMA, and also improve detection accuracy. Lastly, gradient norm clipping with norm estimation achieves 3.8 mAP improvement at YouTube-Objects dataset by fast adaptation with under 1% of the additional computation. Finally, the proposed online learning OD processor is implemented in 28 nm CMOS technology and occupies 1.2 mm 2 . The proposed processor achieves 78 mAP of detection accuracy at the YouTube-Objects dataset. Compared to the previous OD processor, this brief shows state-of-the-art performance by achieving 49.5 mW power consumption and 34.4 frame-per-second real-time online learning OD on mobile devices. |
---|---|
ISSN: | 1549-7747 1558-3791 |
DOI: | 10.1109/TCSII.2022.3160160 |