Loading…

An Instant-Startup Jitter-Tolerant Manchester-Encoding Serializer/Deserializer Scheme for Event-Driven Bit-Serial LVDS Interchip AER Links

This paper presents a serializer/deserializer scheme for asynchronous address event representation (AER) bit-serial interchip communications. Each serial AER (sAER) link uses four wires: a micro strip pair for low voltage differential signaling (LVDS) and two handshaking lines. Each event is represe...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2011-11, Vol.58 (11), p.2647-2660
Main Authors: Zamarreno-Ramos, C., Serrano-Gotarredona, T., Linares-Barranco, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a serializer/deserializer scheme for asynchronous address event representation (AER) bit-serial interchip communications. Each serial AER (sAER) link uses four wires: a micro strip pair for low voltage differential signaling (LVDS) and two handshaking lines. Each event is represented by a 32-bit word. Two extra preamble bits are used for alignment. Transmission clock is embedded in the data using Manchester encoding. As opposed to conventional LVDS links, the presented approach allows to stop physical communication between data events, so that no "comma" characters need to be transmitted during these pauses. As soon as a new event needs to be transmitted, the link recovers immediately thanks to a built-in control voltage memorization circuit. As a result, power consumption of the serializer and deserializer circuits is proportional to data event rate. The approach is also highly tolerant to clock jitter, due to the asynchronous nature and the Manchester encoding. A chip test prototype has been fabricated in standard 0.35 μm CMOS including a pair of Serializer and Deserializer circuits. Maximum measured event transmission rate is 15 Meps (mega events per second) for 32-bit events, with a maximum bit transmission speed of 670 Mbps (mega bits per second).
ISSN:1549-8328
1558-0806
DOI:10.1109/TCSI.2011.2151070