Loading…
A New Varying-Parameter Recurrent Neural-Network for Online Solution of Time-Varying Sylvester Equation
Solving Sylvester equation is a common algebraic problem in mathematics and control theory. Different from the traditional fixed-parameter recurrent neural networks, such as gradient-based recurrent neural networks or Zhang neural networks, a novel varying-parameter recurrent neural network, [called...
Saved in:
Published in: | IEEE transactions on cybernetics 2018-11, Vol.48 (11), p.3135-3148 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Solving Sylvester equation is a common algebraic problem in mathematics and control theory. Different from the traditional fixed-parameter recurrent neural networks, such as gradient-based recurrent neural networks or Zhang neural networks, a novel varying-parameter recurrent neural network, [called varying-parameter convergent-differential neural network (VP-CDNN)] is proposed in this paper for obtaining the online solution to the time-varying Sylvester equation. With time passing by, this kind of new varying-parameter neural network can achieve super-exponential performance. Computer simulation comparisons between the fixed-parameter neural networks and the proposed VP-CDNN via using different kinds of activation functions demonstrate that the proposed VP-CDNN has better convergence and robustness properties. |
---|---|
ISSN: | 2168-2267 2168-2275 |
DOI: | 10.1109/TCYB.2017.2760883 |