Loading…
A New Varying-Parameter Recurrent Neural-Network for Online Solution of Time-Varying Sylvester Equation
Solving Sylvester equation is a common algebraic problem in mathematics and control theory. Different from the traditional fixed-parameter recurrent neural networks, such as gradient-based recurrent neural networks or Zhang neural networks, a novel varying-parameter recurrent neural network, [called...
Saved in:
Published in: | IEEE transactions on cybernetics 2018-11, Vol.48 (11), p.3135-3148 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-feb32783ea3c6a33d3e802dc906e8f4ef1eedd29cb738d936ebe7362f56a75123 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-feb32783ea3c6a33d3e802dc906e8f4ef1eedd29cb738d936ebe7362f56a75123 |
container_end_page | 3148 |
container_issue | 11 |
container_start_page | 3135 |
container_title | IEEE transactions on cybernetics |
container_volume | 48 |
creator | Zhang, Zhijun Zheng, Lunan Weng, Jian Mao, Yijun Lu, Wei Xiao, Lin |
description | Solving Sylvester equation is a common algebraic problem in mathematics and control theory. Different from the traditional fixed-parameter recurrent neural networks, such as gradient-based recurrent neural networks or Zhang neural networks, a novel varying-parameter recurrent neural network, [called varying-parameter convergent-differential neural network (VP-CDNN)] is proposed in this paper for obtaining the online solution to the time-varying Sylvester equation. With time passing by, this kind of new varying-parameter neural network can achieve super-exponential performance. Computer simulation comparisons between the fixed-parameter neural networks and the proposed VP-CDNN via using different kinds of activation functions demonstrate that the proposed VP-CDNN has better convergence and robustness properties. |
doi_str_mv | 10.1109/TCYB.2017.2760883 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCYB_2017_2760883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8283812</ieee_id><sourcerecordid>2121931766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-feb32783ea3c6a33d3e802dc906e8f4ef1eedd29cb738d936ebe7362f56a75123</originalsourceid><addsrcrecordid>eNpdkU1LAzEQhoMoWtQfIIIEvHjZmmTafBy1-AWlilbBU0h3Z2Xr7kazu4r_3iytPZjLhLzPvEzmJeSIsyHnzJzPJ6-XQ8G4GgolmdawRQaCS50Iocbbm7tUe-SwaZYsHh2fjN4le8IYMwLNB-Ttgs7wm7648FPUb8mDC67CFgN9xLQLAes26l1wZTLD9tuHd5r7QO_rsqiRPvmyawtfU5_TeVFhsrahTz_lFza9zdVn53rkgOzkrmzwcF33yfP11Xxym0zvb-4mF9MkhZFpkxwXIJQGdJBKB5ABaiay1DCJOh9hzhGzTJh0oUBnBiQuUIEU-Vg6NeYC9snZyvcj-M8uzmCrokmxLF2NvmusYFIDGM5GET39hy59F-o4nRVccANcSRkpvqLS4JsmYG4_QlHFf1rObB-E7YOwfRB2HUTsOVk7d4sKs03H39ojcLwCCkTcyFroKAr4BboYjJI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121931766</pqid></control><display><type>article</type><title>A New Varying-Parameter Recurrent Neural-Network for Online Solution of Time-Varying Sylvester Equation</title><source>IEEE Xplore (Online service)</source><creator>Zhang, Zhijun ; Zheng, Lunan ; Weng, Jian ; Mao, Yijun ; Lu, Wei ; Xiao, Lin</creator><creatorcontrib>Zhang, Zhijun ; Zheng, Lunan ; Weng, Jian ; Mao, Yijun ; Lu, Wei ; Xiao, Lin</creatorcontrib><description>Solving Sylvester equation is a common algebraic problem in mathematics and control theory. Different from the traditional fixed-parameter recurrent neural networks, such as gradient-based recurrent neural networks or Zhang neural networks, a novel varying-parameter recurrent neural network, [called varying-parameter convergent-differential neural network (VP-CDNN)] is proposed in this paper for obtaining the online solution to the time-varying Sylvester equation. With time passing by, this kind of new varying-parameter neural network can achieve super-exponential performance. Computer simulation comparisons between the fixed-parameter neural networks and the proposed VP-CDNN via using different kinds of activation functions demonstrate that the proposed VP-CDNN has better convergence and robustness properties.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2017.2760883</identifier><identifier>PMID: 29994381</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Biological neural networks ; Computer simulation ; Computer simulations ; Control theory ; Convergence ; convergence and robustness ; Mathematical analysis ; Mathematical model ; Neural networks ; Parameters ; Recurrent neural networks ; Robustness ; Robustness (mathematics) ; time-varying equation solving ; Time-varying systems</subject><ispartof>IEEE transactions on cybernetics, 2018-11, Vol.48 (11), p.3135-3148</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-feb32783ea3c6a33d3e802dc906e8f4ef1eedd29cb738d936ebe7362f56a75123</citedby><cites>FETCH-LOGICAL-c349t-feb32783ea3c6a33d3e802dc906e8f4ef1eedd29cb738d936ebe7362f56a75123</cites><orcidid>0000-0003-4067-8230 ; 0000-0002-4068-1766 ; 0000-0002-6859-3426 ; 0000-0002-7671-6051 ; 0000-0003-3172-3490</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8283812$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29994381$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zhijun</creatorcontrib><creatorcontrib>Zheng, Lunan</creatorcontrib><creatorcontrib>Weng, Jian</creatorcontrib><creatorcontrib>Mao, Yijun</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Xiao, Lin</creatorcontrib><title>A New Varying-Parameter Recurrent Neural-Network for Online Solution of Time-Varying Sylvester Equation</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>Solving Sylvester equation is a common algebraic problem in mathematics and control theory. Different from the traditional fixed-parameter recurrent neural networks, such as gradient-based recurrent neural networks or Zhang neural networks, a novel varying-parameter recurrent neural network, [called varying-parameter convergent-differential neural network (VP-CDNN)] is proposed in this paper for obtaining the online solution to the time-varying Sylvester equation. With time passing by, this kind of new varying-parameter neural network can achieve super-exponential performance. Computer simulation comparisons between the fixed-parameter neural networks and the proposed VP-CDNN via using different kinds of activation functions demonstrate that the proposed VP-CDNN has better convergence and robustness properties.</description><subject>Biological neural networks</subject><subject>Computer simulation</subject><subject>Computer simulations</subject><subject>Control theory</subject><subject>Convergence</subject><subject>convergence and robustness</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Recurrent neural networks</subject><subject>Robustness</subject><subject>Robustness (mathematics)</subject><subject>time-varying equation solving</subject><subject>Time-varying systems</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkU1LAzEQhoMoWtQfIIIEvHjZmmTafBy1-AWlilbBU0h3Z2Xr7kazu4r_3iytPZjLhLzPvEzmJeSIsyHnzJzPJ6-XQ8G4GgolmdawRQaCS50Iocbbm7tUe-SwaZYsHh2fjN4le8IYMwLNB-Ttgs7wm7648FPUb8mDC67CFgN9xLQLAes26l1wZTLD9tuHd5r7QO_rsqiRPvmyawtfU5_TeVFhsrahTz_lFza9zdVn53rkgOzkrmzwcF33yfP11Xxym0zvb-4mF9MkhZFpkxwXIJQGdJBKB5ABaiay1DCJOh9hzhGzTJh0oUBnBiQuUIEU-Vg6NeYC9snZyvcj-M8uzmCrokmxLF2NvmusYFIDGM5GET39hy59F-o4nRVccANcSRkpvqLS4JsmYG4_QlHFf1rObB-E7YOwfRB2HUTsOVk7d4sKs03H39ojcLwCCkTcyFroKAr4BboYjJI</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Zhang, Zhijun</creator><creator>Zheng, Lunan</creator><creator>Weng, Jian</creator><creator>Mao, Yijun</creator><creator>Lu, Wei</creator><creator>Xiao, Lin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4067-8230</orcidid><orcidid>https://orcid.org/0000-0002-4068-1766</orcidid><orcidid>https://orcid.org/0000-0002-6859-3426</orcidid><orcidid>https://orcid.org/0000-0002-7671-6051</orcidid><orcidid>https://orcid.org/0000-0003-3172-3490</orcidid></search><sort><creationdate>20181101</creationdate><title>A New Varying-Parameter Recurrent Neural-Network for Online Solution of Time-Varying Sylvester Equation</title><author>Zhang, Zhijun ; Zheng, Lunan ; Weng, Jian ; Mao, Yijun ; Lu, Wei ; Xiao, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-feb32783ea3c6a33d3e802dc906e8f4ef1eedd29cb738d936ebe7362f56a75123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biological neural networks</topic><topic>Computer simulation</topic><topic>Computer simulations</topic><topic>Control theory</topic><topic>Convergence</topic><topic>convergence and robustness</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Recurrent neural networks</topic><topic>Robustness</topic><topic>Robustness (mathematics)</topic><topic>time-varying equation solving</topic><topic>Time-varying systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhijun</creatorcontrib><creatorcontrib>Zheng, Lunan</creatorcontrib><creatorcontrib>Weng, Jian</creatorcontrib><creatorcontrib>Mao, Yijun</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Xiao, Lin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhijun</au><au>Zheng, Lunan</au><au>Weng, Jian</au><au>Mao, Yijun</au><au>Lu, Wei</au><au>Xiao, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Varying-Parameter Recurrent Neural-Network for Online Solution of Time-Varying Sylvester Equation</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>48</volume><issue>11</issue><spage>3135</spage><epage>3148</epage><pages>3135-3148</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>Solving Sylvester equation is a common algebraic problem in mathematics and control theory. Different from the traditional fixed-parameter recurrent neural networks, such as gradient-based recurrent neural networks or Zhang neural networks, a novel varying-parameter recurrent neural network, [called varying-parameter convergent-differential neural network (VP-CDNN)] is proposed in this paper for obtaining the online solution to the time-varying Sylvester equation. With time passing by, this kind of new varying-parameter neural network can achieve super-exponential performance. Computer simulation comparisons between the fixed-parameter neural networks and the proposed VP-CDNN via using different kinds of activation functions demonstrate that the proposed VP-CDNN has better convergence and robustness properties.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29994381</pmid><doi>10.1109/TCYB.2017.2760883</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4067-8230</orcidid><orcidid>https://orcid.org/0000-0002-4068-1766</orcidid><orcidid>https://orcid.org/0000-0002-6859-3426</orcidid><orcidid>https://orcid.org/0000-0002-7671-6051</orcidid><orcidid>https://orcid.org/0000-0003-3172-3490</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-2267 |
ispartof | IEEE transactions on cybernetics, 2018-11, Vol.48 (11), p.3135-3148 |
issn | 2168-2267 2168-2275 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCYB_2017_2760883 |
source | IEEE Xplore (Online service) |
subjects | Biological neural networks Computer simulation Computer simulations Control theory Convergence convergence and robustness Mathematical analysis Mathematical model Neural networks Parameters Recurrent neural networks Robustness Robustness (mathematics) time-varying equation solving Time-varying systems |
title | A New Varying-Parameter Recurrent Neural-Network for Online Solution of Time-Varying Sylvester Equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A51%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Varying-Parameter%20Recurrent%20Neural-Network%20for%20Online%20Solution%20of%20Time-Varying%20Sylvester%20Equation&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Zhang,%20Zhijun&rft.date=2018-11-01&rft.volume=48&rft.issue=11&rft.spage=3135&rft.epage=3148&rft.pages=3135-3148&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2017.2760883&rft_dat=%3Cproquest_cross%3E2121931766%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-feb32783ea3c6a33d3e802dc906e8f4ef1eedd29cb738d936ebe7362f56a75123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121931766&rft_id=info:pmid/29994381&rft_ieee_id=8283812&rfr_iscdi=true |