Loading…

P-Type Versus n-Type Silicon Wafers: Prospects for High-Efficiency Commercial Silicon Solar Cells

Chemical and crystallographic defects are a reality of solar-grade silicon wafers and industrial production processes. Long overlooked, phosphorus as a bulk dopant in silicon wafers is an excellent way to mitigate recombination associated with these defects. This paper details the connection between...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2006-08, Vol.53 (8), p.1893-1901
Main Authors: Cotter, J.E., Guo, J.H., Cousins, P.J., Abbott, M.D., Chen, F.W., Fisher, K.C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Chemical and crystallographic defects are a reality of solar-grade silicon wafers and industrial production processes. Long overlooked, phosphorus as a bulk dopant in silicon wafers is an excellent way to mitigate recombination associated with these defects. This paper details the connection between defect recombination and solar cell terminal characteristics for the specific case of unequal electron and hole lifetimes. It then looks at a detailed case study of the impact of diffusion-induced dislocations on the recombination statistics in n-type and p-type silicon wafers and the terminal characteristics of high-efficiency double-sided buried contact silicon solar cells made on both types of wafers. Several additional short case studies examine the recombination associated with other industrially relevant situations-process-induced dislocations, surface passivation, and unwanted contamination. For the defects studied here, n-type silicon wafers are more tolerant to chemical and crystallographic defects, and as such, they have exceptional potential as a wafer for high-efficiency commercial silicon solar cells
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2006.878026