Loading…
Optimal Ferroelectric Parameters for Negative Capacitance Field-Effect Transistors Based on Full-Chip Implementations-Part II: Scaling of the Supply Voltage
Negative capacitance field-effect transistors (NCFETs) with optimal ferroelectric parameters provide phenomenal power reduction as discussed in Part I. In this part, we explore the impact of operating voltage on power consumption at the device, gate, and full-chip levels. We first observe that high...
Saved in:
Published in: | IEEE transactions on electron devices 2020-01, Vol.67 (1), p.371-376 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Negative capacitance field-effect transistors (NCFETs) with optimal ferroelectric parameters provide phenomenal power reduction as discussed in Part I. In this part, we explore the impact of operating voltage on power consumption at the device, gate, and full-chip levels. We first observe that high operating voltages applied to NCFET devices lead to an abrupt increase in both the drain current and the gate capacitance. Furthermore, negative capacitance is lost when the voltage is set too high. On the other hand, the gate capacitance increase still exists, although with smaller magnitude, even at low operating voltages. This helps reduce device delay and eventually full-chip delay. Furthermore, delay improvement at the full-chip level can be traded off to gain power reduction at the full-chip level. Finally, our experiments suggest that a sufficiently low supply voltage (= 0.4 V out of [0.2 and 0.8 V] range in our study) is needed to maximize power and performance gain at full-chip level. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2019.2955010 |