Loading…
Efficient Modeling of Charge Trapping at Cryogenic Temperatures-Part II: Experimental
We present time-zero characterization and an investigation on bias temperature instability (BTI) degradation between 4 and 300 K on large area high- {k} CMOS devices. Our measurements show that negative BTI (NBTI) on pMOSFETs freezes out when approaching cryogenic temperatures, whereas there is sti...
Saved in:
Published in: | IEEE transactions on electron devices 2021-12, Vol.68 (12), p.6372-6378 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-77fcc710a0037c18feb72985b781627e15e7ec3f32f367d4076393d4d81a0f3c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-77fcc710a0037c18feb72985b781627e15e7ec3f32f367d4076393d4d81a0f3c3 |
container_end_page | 6378 |
container_issue | 12 |
container_start_page | 6372 |
container_title | IEEE transactions on electron devices |
container_volume | 68 |
creator | Michl, Jakob Grill, Alexander Waldhoer, Dominic Goes, Wolfgang Kaczer, Ben Linten, Dimitri Parvais, Bertrand Govoreanu, Bogdan Radu, Iuliana Grasser, Tibor Waltl, Michael |
description | We present time-zero characterization and an investigation on bias temperature instability (BTI) degradation between 4 and 300 K on large area high- {k} CMOS devices. Our measurements show that negative BTI (NBTI) on pMOSFETs freezes out when approaching cryogenic temperatures, whereas there is still significant positive BTI (PBTI) degradation in nMOSFETs even at 4 K. To explain this behavior, we use an efficient implementation of the quantum mechanical nonradiative multiphonon charge trapping model presented in Part I and extract two separate trap bands in the SiO 2 and HfO 2 layer. We show that NBTI is dominated by defects in the SiO 2 layer, whereas PBTI arises mainly from defects in the HfO 2 layer, which are weakly recoverable and do not freeze out at low temperatures due to dominant nuclear tunneling at the defect site. |
doi_str_mv | 10.1109/TED.2021.3117740 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2021_3117740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9580748</ieee_id><sourcerecordid>2604924453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-77fcc710a0037c18feb72985b781627e15e7ec3f32f367d4076393d4d81a0f3c3</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWD_ugpeA56352k3iTdZVCxU9bM8hzU7qlnZ3TbZg_3tTWjwN83jvzfBD6I6SKaVEP9bVy5QRRqecUikFOUMTmucy04UoztGEEKoyzRW_RFcxrtNaCMEmaFF537oWuhF_9A1s2m6Fe4_LbxtWgOtgh-Eg2RGXYd-voGsdrmE7QLDjLkDMvmwY8Wz2hKvfJLbb1GQ3N-jC202E29O8RovXqi7fs_nn26x8nmeOaTpmUnrnJCWWEC4dVR6WkmmVL6WiBZNAc5DguOfM80I2gsiCa96IRlFLPHf8Gj0ce4fQ_-wgjmbd70KXThpWEKGZEDlPLnJ0udDHGMCbIT1qw95QYg7wTIJnDvDMCV6K3B8jLQD823WuiBSK_wHXbWmW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604924453</pqid></control><display><type>article</type><title>Efficient Modeling of Charge Trapping at Cryogenic Temperatures-Part II: Experimental</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Michl, Jakob ; Grill, Alexander ; Waldhoer, Dominic ; Goes, Wolfgang ; Kaczer, Ben ; Linten, Dimitri ; Parvais, Bertrand ; Govoreanu, Bogdan ; Radu, Iuliana ; Grasser, Tibor ; Waltl, Michael</creator><creatorcontrib>Michl, Jakob ; Grill, Alexander ; Waldhoer, Dominic ; Goes, Wolfgang ; Kaczer, Ben ; Linten, Dimitri ; Parvais, Bertrand ; Govoreanu, Bogdan ; Radu, Iuliana ; Grasser, Tibor ; Waltl, Michael</creatorcontrib><description>We present time-zero characterization and an investigation on bias temperature instability (BTI) degradation between 4 and 300 K on large area high-<inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula> CMOS devices. Our measurements show that negative BTI (NBTI) on pMOSFETs freezes out when approaching cryogenic temperatures, whereas there is still significant positive BTI (PBTI) degradation in nMOSFETs even at 4 K. To explain this behavior, we use an efficient implementation of the quantum mechanical nonradiative multiphonon charge trapping model presented in Part I and extract two separate trap bands in the SiO 2 and HfO 2 layer. We show that NBTI is dominated by defects in the SiO 2 layer, whereas PBTI arises mainly from defects in the HfO 2 layer, which are weakly recoverable and do not freeze out at low temperatures due to dominant nuclear tunneling at the defect site.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2021.3117740</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>28-nm bulk CMOS ; 4 K ; advanced CMOS ; bias temperature instability (BTI) ; CMOS ; cryoelectronics ; cryogenic ; Cryogenic temperature ; Cryogenics ; Defects ; Degradation ; Hafnium oxide ; Low temperature ; MOSFETs ; physical modeling ; Quantum mechanics ; Silicon dioxide ; Stress ; Stress measurement ; Temperature ; Thermal variables control ; Threshold voltage ; Trapping</subject><ispartof>IEEE transactions on electron devices, 2021-12, Vol.68 (12), p.6372-6378</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-77fcc710a0037c18feb72985b781627e15e7ec3f32f367d4076393d4d81a0f3c3</citedby><cites>FETCH-LOGICAL-c291t-77fcc710a0037c18feb72985b781627e15e7ec3f32f367d4076393d4d81a0f3c3</cites><orcidid>0000-0003-1615-1033 ; 0000-0002-1484-4007 ; 0000-0003-0769-7069 ; 0000-0001-6536-2238 ; 0000-0002-8631-5681 ; 0000-0003-2539-3245 ; 0000-0002-7230-7218 ; 0000-0001-6042-759X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9580748$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Michl, Jakob</creatorcontrib><creatorcontrib>Grill, Alexander</creatorcontrib><creatorcontrib>Waldhoer, Dominic</creatorcontrib><creatorcontrib>Goes, Wolfgang</creatorcontrib><creatorcontrib>Kaczer, Ben</creatorcontrib><creatorcontrib>Linten, Dimitri</creatorcontrib><creatorcontrib>Parvais, Bertrand</creatorcontrib><creatorcontrib>Govoreanu, Bogdan</creatorcontrib><creatorcontrib>Radu, Iuliana</creatorcontrib><creatorcontrib>Grasser, Tibor</creatorcontrib><creatorcontrib>Waltl, Michael</creatorcontrib><title>Efficient Modeling of Charge Trapping at Cryogenic Temperatures-Part II: Experimental</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>We present time-zero characterization and an investigation on bias temperature instability (BTI) degradation between 4 and 300 K on large area high-<inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula> CMOS devices. Our measurements show that negative BTI (NBTI) on pMOSFETs freezes out when approaching cryogenic temperatures, whereas there is still significant positive BTI (PBTI) degradation in nMOSFETs even at 4 K. To explain this behavior, we use an efficient implementation of the quantum mechanical nonradiative multiphonon charge trapping model presented in Part I and extract two separate trap bands in the SiO 2 and HfO 2 layer. We show that NBTI is dominated by defects in the SiO 2 layer, whereas PBTI arises mainly from defects in the HfO 2 layer, which are weakly recoverable and do not freeze out at low temperatures due to dominant nuclear tunneling at the defect site.</description><subject>28-nm bulk CMOS</subject><subject>4 K</subject><subject>advanced CMOS</subject><subject>bias temperature instability (BTI)</subject><subject>CMOS</subject><subject>cryoelectronics</subject><subject>cryogenic</subject><subject>Cryogenic temperature</subject><subject>Cryogenics</subject><subject>Defects</subject><subject>Degradation</subject><subject>Hafnium oxide</subject><subject>Low temperature</subject><subject>MOSFETs</subject><subject>physical modeling</subject><subject>Quantum mechanics</subject><subject>Silicon dioxide</subject><subject>Stress</subject><subject>Stress measurement</subject><subject>Temperature</subject><subject>Thermal variables control</subject><subject>Threshold voltage</subject><subject>Trapping</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxYMoWD_ugpeA56352k3iTdZVCxU9bM8hzU7qlnZ3TbZg_3tTWjwN83jvzfBD6I6SKaVEP9bVy5QRRqecUikFOUMTmucy04UoztGEEKoyzRW_RFcxrtNaCMEmaFF537oWuhF_9A1s2m6Fe4_LbxtWgOtgh-Eg2RGXYd-voGsdrmE7QLDjLkDMvmwY8Wz2hKvfJLbb1GQ3N-jC202E29O8RovXqi7fs_nn26x8nmeOaTpmUnrnJCWWEC4dVR6WkmmVL6WiBZNAc5DguOfM80I2gsiCa96IRlFLPHf8Gj0ce4fQ_-wgjmbd70KXThpWEKGZEDlPLnJ0udDHGMCbIT1qw95QYg7wTIJnDvDMCV6K3B8jLQD823WuiBSK_wHXbWmW</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Michl, Jakob</creator><creator>Grill, Alexander</creator><creator>Waldhoer, Dominic</creator><creator>Goes, Wolfgang</creator><creator>Kaczer, Ben</creator><creator>Linten, Dimitri</creator><creator>Parvais, Bertrand</creator><creator>Govoreanu, Bogdan</creator><creator>Radu, Iuliana</creator><creator>Grasser, Tibor</creator><creator>Waltl, Michael</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1615-1033</orcidid><orcidid>https://orcid.org/0000-0002-1484-4007</orcidid><orcidid>https://orcid.org/0000-0003-0769-7069</orcidid><orcidid>https://orcid.org/0000-0001-6536-2238</orcidid><orcidid>https://orcid.org/0000-0002-8631-5681</orcidid><orcidid>https://orcid.org/0000-0003-2539-3245</orcidid><orcidid>https://orcid.org/0000-0002-7230-7218</orcidid><orcidid>https://orcid.org/0000-0001-6042-759X</orcidid></search><sort><creationdate>20211201</creationdate><title>Efficient Modeling of Charge Trapping at Cryogenic Temperatures-Part II: Experimental</title><author>Michl, Jakob ; Grill, Alexander ; Waldhoer, Dominic ; Goes, Wolfgang ; Kaczer, Ben ; Linten, Dimitri ; Parvais, Bertrand ; Govoreanu, Bogdan ; Radu, Iuliana ; Grasser, Tibor ; Waltl, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-77fcc710a0037c18feb72985b781627e15e7ec3f32f367d4076393d4d81a0f3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>28-nm bulk CMOS</topic><topic>4 K</topic><topic>advanced CMOS</topic><topic>bias temperature instability (BTI)</topic><topic>CMOS</topic><topic>cryoelectronics</topic><topic>cryogenic</topic><topic>Cryogenic temperature</topic><topic>Cryogenics</topic><topic>Defects</topic><topic>Degradation</topic><topic>Hafnium oxide</topic><topic>Low temperature</topic><topic>MOSFETs</topic><topic>physical modeling</topic><topic>Quantum mechanics</topic><topic>Silicon dioxide</topic><topic>Stress</topic><topic>Stress measurement</topic><topic>Temperature</topic><topic>Thermal variables control</topic><topic>Threshold voltage</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michl, Jakob</creatorcontrib><creatorcontrib>Grill, Alexander</creatorcontrib><creatorcontrib>Waldhoer, Dominic</creatorcontrib><creatorcontrib>Goes, Wolfgang</creatorcontrib><creatorcontrib>Kaczer, Ben</creatorcontrib><creatorcontrib>Linten, Dimitri</creatorcontrib><creatorcontrib>Parvais, Bertrand</creatorcontrib><creatorcontrib>Govoreanu, Bogdan</creatorcontrib><creatorcontrib>Radu, Iuliana</creatorcontrib><creatorcontrib>Grasser, Tibor</creatorcontrib><creatorcontrib>Waltl, Michael</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michl, Jakob</au><au>Grill, Alexander</au><au>Waldhoer, Dominic</au><au>Goes, Wolfgang</au><au>Kaczer, Ben</au><au>Linten, Dimitri</au><au>Parvais, Bertrand</au><au>Govoreanu, Bogdan</au><au>Radu, Iuliana</au><au>Grasser, Tibor</au><au>Waltl, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Modeling of Charge Trapping at Cryogenic Temperatures-Part II: Experimental</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>68</volume><issue>12</issue><spage>6372</spage><epage>6378</epage><pages>6372-6378</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>We present time-zero characterization and an investigation on bias temperature instability (BTI) degradation between 4 and 300 K on large area high-<inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula> CMOS devices. Our measurements show that negative BTI (NBTI) on pMOSFETs freezes out when approaching cryogenic temperatures, whereas there is still significant positive BTI (PBTI) degradation in nMOSFETs even at 4 K. To explain this behavior, we use an efficient implementation of the quantum mechanical nonradiative multiphonon charge trapping model presented in Part I and extract two separate trap bands in the SiO 2 and HfO 2 layer. We show that NBTI is dominated by defects in the SiO 2 layer, whereas PBTI arises mainly from defects in the HfO 2 layer, which are weakly recoverable and do not freeze out at low temperatures due to dominant nuclear tunneling at the defect site.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2021.3117740</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1615-1033</orcidid><orcidid>https://orcid.org/0000-0002-1484-4007</orcidid><orcidid>https://orcid.org/0000-0003-0769-7069</orcidid><orcidid>https://orcid.org/0000-0001-6536-2238</orcidid><orcidid>https://orcid.org/0000-0002-8631-5681</orcidid><orcidid>https://orcid.org/0000-0003-2539-3245</orcidid><orcidid>https://orcid.org/0000-0002-7230-7218</orcidid><orcidid>https://orcid.org/0000-0001-6042-759X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2021-12, Vol.68 (12), p.6372-6378 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TED_2021_3117740 |
source | IEEE Electronic Library (IEL) Journals |
subjects | 28-nm bulk CMOS 4 K advanced CMOS bias temperature instability (BTI) CMOS cryoelectronics cryogenic Cryogenic temperature Cryogenics Defects Degradation Hafnium oxide Low temperature MOSFETs physical modeling Quantum mechanics Silicon dioxide Stress Stress measurement Temperature Thermal variables control Threshold voltage Trapping |
title | Efficient Modeling of Charge Trapping at Cryogenic Temperatures-Part II: Experimental |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A51%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Modeling%20of%20Charge%20Trapping%20at%20Cryogenic%20Temperatures-Part%20II:%20Experimental&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Michl,%20Jakob&rft.date=2021-12-01&rft.volume=68&rft.issue=12&rft.spage=6372&rft.epage=6378&rft.pages=6372-6378&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2021.3117740&rft_dat=%3Cproquest_cross%3E2604924453%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-77fcc710a0037c18feb72985b781627e15e7ec3f32f367d4076393d4d81a0f3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2604924453&rft_id=info:pmid/&rft_ieee_id=9580748&rfr_iscdi=true |