Loading…

Efficient Modeling of Charge Trapping at Cryogenic Temperatures-Part II: Experimental

We present time-zero characterization and an investigation on bias temperature instability (BTI) degradation between 4 and 300 K on large area high- {k} CMOS devices. Our measurements show that negative BTI (NBTI) on pMOSFETs freezes out when approaching cryogenic temperatures, whereas there is sti...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2021-12, Vol.68 (12), p.6372-6378
Main Authors: Michl, Jakob, Grill, Alexander, Waldhoer, Dominic, Goes, Wolfgang, Kaczer, Ben, Linten, Dimitri, Parvais, Bertrand, Govoreanu, Bogdan, Radu, Iuliana, Grasser, Tibor, Waltl, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-77fcc710a0037c18feb72985b781627e15e7ec3f32f367d4076393d4d81a0f3c3
cites cdi_FETCH-LOGICAL-c291t-77fcc710a0037c18feb72985b781627e15e7ec3f32f367d4076393d4d81a0f3c3
container_end_page 6378
container_issue 12
container_start_page 6372
container_title IEEE transactions on electron devices
container_volume 68
creator Michl, Jakob
Grill, Alexander
Waldhoer, Dominic
Goes, Wolfgang
Kaczer, Ben
Linten, Dimitri
Parvais, Bertrand
Govoreanu, Bogdan
Radu, Iuliana
Grasser, Tibor
Waltl, Michael
description We present time-zero characterization and an investigation on bias temperature instability (BTI) degradation between 4 and 300 K on large area high- {k} CMOS devices. Our measurements show that negative BTI (NBTI) on pMOSFETs freezes out when approaching cryogenic temperatures, whereas there is still significant positive BTI (PBTI) degradation in nMOSFETs even at 4 K. To explain this behavior, we use an efficient implementation of the quantum mechanical nonradiative multiphonon charge trapping model presented in Part I and extract two separate trap bands in the SiO 2 and HfO 2 layer. We show that NBTI is dominated by defects in the SiO 2 layer, whereas PBTI arises mainly from defects in the HfO 2 layer, which are weakly recoverable and do not freeze out at low temperatures due to dominant nuclear tunneling at the defect site.
doi_str_mv 10.1109/TED.2021.3117740
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2021_3117740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9580748</ieee_id><sourcerecordid>2604924453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-77fcc710a0037c18feb72985b781627e15e7ec3f32f367d4076393d4d81a0f3c3</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWD_ugpeA56352k3iTdZVCxU9bM8hzU7qlnZ3TbZg_3tTWjwN83jvzfBD6I6SKaVEP9bVy5QRRqecUikFOUMTmucy04UoztGEEKoyzRW_RFcxrtNaCMEmaFF537oWuhF_9A1s2m6Fe4_LbxtWgOtgh-Eg2RGXYd-voGsdrmE7QLDjLkDMvmwY8Wz2hKvfJLbb1GQ3N-jC202E29O8RovXqi7fs_nn26x8nmeOaTpmUnrnJCWWEC4dVR6WkmmVL6WiBZNAc5DguOfM80I2gsiCa96IRlFLPHf8Gj0ce4fQ_-wgjmbd70KXThpWEKGZEDlPLnJ0udDHGMCbIT1qw95QYg7wTIJnDvDMCV6K3B8jLQD823WuiBSK_wHXbWmW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604924453</pqid></control><display><type>article</type><title>Efficient Modeling of Charge Trapping at Cryogenic Temperatures-Part II: Experimental</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Michl, Jakob ; Grill, Alexander ; Waldhoer, Dominic ; Goes, Wolfgang ; Kaczer, Ben ; Linten, Dimitri ; Parvais, Bertrand ; Govoreanu, Bogdan ; Radu, Iuliana ; Grasser, Tibor ; Waltl, Michael</creator><creatorcontrib>Michl, Jakob ; Grill, Alexander ; Waldhoer, Dominic ; Goes, Wolfgang ; Kaczer, Ben ; Linten, Dimitri ; Parvais, Bertrand ; Govoreanu, Bogdan ; Radu, Iuliana ; Grasser, Tibor ; Waltl, Michael</creatorcontrib><description>We present time-zero characterization and an investigation on bias temperature instability (BTI) degradation between 4 and 300 K on large area high-&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{k} &lt;/tex-math&gt;&lt;/inline-formula&gt; CMOS devices. Our measurements show that negative BTI (NBTI) on pMOSFETs freezes out when approaching cryogenic temperatures, whereas there is still significant positive BTI (PBTI) degradation in nMOSFETs even at 4 K. To explain this behavior, we use an efficient implementation of the quantum mechanical nonradiative multiphonon charge trapping model presented in Part I and extract two separate trap bands in the SiO 2 and HfO 2 layer. We show that NBTI is dominated by defects in the SiO 2 layer, whereas PBTI arises mainly from defects in the HfO 2 layer, which are weakly recoverable and do not freeze out at low temperatures due to dominant nuclear tunneling at the defect site.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2021.3117740</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>28-nm bulk CMOS ; 4 K ; advanced CMOS ; bias temperature instability (BTI) ; CMOS ; cryoelectronics ; cryogenic ; Cryogenic temperature ; Cryogenics ; Defects ; Degradation ; Hafnium oxide ; Low temperature ; MOSFETs ; physical modeling ; Quantum mechanics ; Silicon dioxide ; Stress ; Stress measurement ; Temperature ; Thermal variables control ; Threshold voltage ; Trapping</subject><ispartof>IEEE transactions on electron devices, 2021-12, Vol.68 (12), p.6372-6378</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-77fcc710a0037c18feb72985b781627e15e7ec3f32f367d4076393d4d81a0f3c3</citedby><cites>FETCH-LOGICAL-c291t-77fcc710a0037c18feb72985b781627e15e7ec3f32f367d4076393d4d81a0f3c3</cites><orcidid>0000-0003-1615-1033 ; 0000-0002-1484-4007 ; 0000-0003-0769-7069 ; 0000-0001-6536-2238 ; 0000-0002-8631-5681 ; 0000-0003-2539-3245 ; 0000-0002-7230-7218 ; 0000-0001-6042-759X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9580748$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Michl, Jakob</creatorcontrib><creatorcontrib>Grill, Alexander</creatorcontrib><creatorcontrib>Waldhoer, Dominic</creatorcontrib><creatorcontrib>Goes, Wolfgang</creatorcontrib><creatorcontrib>Kaczer, Ben</creatorcontrib><creatorcontrib>Linten, Dimitri</creatorcontrib><creatorcontrib>Parvais, Bertrand</creatorcontrib><creatorcontrib>Govoreanu, Bogdan</creatorcontrib><creatorcontrib>Radu, Iuliana</creatorcontrib><creatorcontrib>Grasser, Tibor</creatorcontrib><creatorcontrib>Waltl, Michael</creatorcontrib><title>Efficient Modeling of Charge Trapping at Cryogenic Temperatures-Part II: Experimental</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>We present time-zero characterization and an investigation on bias temperature instability (BTI) degradation between 4 and 300 K on large area high-&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{k} &lt;/tex-math&gt;&lt;/inline-formula&gt; CMOS devices. Our measurements show that negative BTI (NBTI) on pMOSFETs freezes out when approaching cryogenic temperatures, whereas there is still significant positive BTI (PBTI) degradation in nMOSFETs even at 4 K. To explain this behavior, we use an efficient implementation of the quantum mechanical nonradiative multiphonon charge trapping model presented in Part I and extract two separate trap bands in the SiO 2 and HfO 2 layer. We show that NBTI is dominated by defects in the SiO 2 layer, whereas PBTI arises mainly from defects in the HfO 2 layer, which are weakly recoverable and do not freeze out at low temperatures due to dominant nuclear tunneling at the defect site.</description><subject>28-nm bulk CMOS</subject><subject>4 K</subject><subject>advanced CMOS</subject><subject>bias temperature instability (BTI)</subject><subject>CMOS</subject><subject>cryoelectronics</subject><subject>cryogenic</subject><subject>Cryogenic temperature</subject><subject>Cryogenics</subject><subject>Defects</subject><subject>Degradation</subject><subject>Hafnium oxide</subject><subject>Low temperature</subject><subject>MOSFETs</subject><subject>physical modeling</subject><subject>Quantum mechanics</subject><subject>Silicon dioxide</subject><subject>Stress</subject><subject>Stress measurement</subject><subject>Temperature</subject><subject>Thermal variables control</subject><subject>Threshold voltage</subject><subject>Trapping</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxYMoWD_ugpeA56352k3iTdZVCxU9bM8hzU7qlnZ3TbZg_3tTWjwN83jvzfBD6I6SKaVEP9bVy5QRRqecUikFOUMTmucy04UoztGEEKoyzRW_RFcxrtNaCMEmaFF537oWuhF_9A1s2m6Fe4_LbxtWgOtgh-Eg2RGXYd-voGsdrmE7QLDjLkDMvmwY8Wz2hKvfJLbb1GQ3N-jC202E29O8RovXqi7fs_nn26x8nmeOaTpmUnrnJCWWEC4dVR6WkmmVL6WiBZNAc5DguOfM80I2gsiCa96IRlFLPHf8Gj0ce4fQ_-wgjmbd70KXThpWEKGZEDlPLnJ0udDHGMCbIT1qw95QYg7wTIJnDvDMCV6K3B8jLQD823WuiBSK_wHXbWmW</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Michl, Jakob</creator><creator>Grill, Alexander</creator><creator>Waldhoer, Dominic</creator><creator>Goes, Wolfgang</creator><creator>Kaczer, Ben</creator><creator>Linten, Dimitri</creator><creator>Parvais, Bertrand</creator><creator>Govoreanu, Bogdan</creator><creator>Radu, Iuliana</creator><creator>Grasser, Tibor</creator><creator>Waltl, Michael</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1615-1033</orcidid><orcidid>https://orcid.org/0000-0002-1484-4007</orcidid><orcidid>https://orcid.org/0000-0003-0769-7069</orcidid><orcidid>https://orcid.org/0000-0001-6536-2238</orcidid><orcidid>https://orcid.org/0000-0002-8631-5681</orcidid><orcidid>https://orcid.org/0000-0003-2539-3245</orcidid><orcidid>https://orcid.org/0000-0002-7230-7218</orcidid><orcidid>https://orcid.org/0000-0001-6042-759X</orcidid></search><sort><creationdate>20211201</creationdate><title>Efficient Modeling of Charge Trapping at Cryogenic Temperatures-Part II: Experimental</title><author>Michl, Jakob ; Grill, Alexander ; Waldhoer, Dominic ; Goes, Wolfgang ; Kaczer, Ben ; Linten, Dimitri ; Parvais, Bertrand ; Govoreanu, Bogdan ; Radu, Iuliana ; Grasser, Tibor ; Waltl, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-77fcc710a0037c18feb72985b781627e15e7ec3f32f367d4076393d4d81a0f3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>28-nm bulk CMOS</topic><topic>4 K</topic><topic>advanced CMOS</topic><topic>bias temperature instability (BTI)</topic><topic>CMOS</topic><topic>cryoelectronics</topic><topic>cryogenic</topic><topic>Cryogenic temperature</topic><topic>Cryogenics</topic><topic>Defects</topic><topic>Degradation</topic><topic>Hafnium oxide</topic><topic>Low temperature</topic><topic>MOSFETs</topic><topic>physical modeling</topic><topic>Quantum mechanics</topic><topic>Silicon dioxide</topic><topic>Stress</topic><topic>Stress measurement</topic><topic>Temperature</topic><topic>Thermal variables control</topic><topic>Threshold voltage</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michl, Jakob</creatorcontrib><creatorcontrib>Grill, Alexander</creatorcontrib><creatorcontrib>Waldhoer, Dominic</creatorcontrib><creatorcontrib>Goes, Wolfgang</creatorcontrib><creatorcontrib>Kaczer, Ben</creatorcontrib><creatorcontrib>Linten, Dimitri</creatorcontrib><creatorcontrib>Parvais, Bertrand</creatorcontrib><creatorcontrib>Govoreanu, Bogdan</creatorcontrib><creatorcontrib>Radu, Iuliana</creatorcontrib><creatorcontrib>Grasser, Tibor</creatorcontrib><creatorcontrib>Waltl, Michael</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michl, Jakob</au><au>Grill, Alexander</au><au>Waldhoer, Dominic</au><au>Goes, Wolfgang</au><au>Kaczer, Ben</au><au>Linten, Dimitri</au><au>Parvais, Bertrand</au><au>Govoreanu, Bogdan</au><au>Radu, Iuliana</au><au>Grasser, Tibor</au><au>Waltl, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Modeling of Charge Trapping at Cryogenic Temperatures-Part II: Experimental</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>68</volume><issue>12</issue><spage>6372</spage><epage>6378</epage><pages>6372-6378</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>We present time-zero characterization and an investigation on bias temperature instability (BTI) degradation between 4 and 300 K on large area high-&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{k} &lt;/tex-math&gt;&lt;/inline-formula&gt; CMOS devices. Our measurements show that negative BTI (NBTI) on pMOSFETs freezes out when approaching cryogenic temperatures, whereas there is still significant positive BTI (PBTI) degradation in nMOSFETs even at 4 K. To explain this behavior, we use an efficient implementation of the quantum mechanical nonradiative multiphonon charge trapping model presented in Part I and extract two separate trap bands in the SiO 2 and HfO 2 layer. We show that NBTI is dominated by defects in the SiO 2 layer, whereas PBTI arises mainly from defects in the HfO 2 layer, which are weakly recoverable and do not freeze out at low temperatures due to dominant nuclear tunneling at the defect site.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2021.3117740</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1615-1033</orcidid><orcidid>https://orcid.org/0000-0002-1484-4007</orcidid><orcidid>https://orcid.org/0000-0003-0769-7069</orcidid><orcidid>https://orcid.org/0000-0001-6536-2238</orcidid><orcidid>https://orcid.org/0000-0002-8631-5681</orcidid><orcidid>https://orcid.org/0000-0003-2539-3245</orcidid><orcidid>https://orcid.org/0000-0002-7230-7218</orcidid><orcidid>https://orcid.org/0000-0001-6042-759X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2021-12, Vol.68 (12), p.6372-6378
issn 0018-9383
1557-9646
language eng
recordid cdi_crossref_primary_10_1109_TED_2021_3117740
source IEEE Electronic Library (IEL) Journals
subjects 28-nm bulk CMOS
4 K
advanced CMOS
bias temperature instability (BTI)
CMOS
cryoelectronics
cryogenic
Cryogenic temperature
Cryogenics
Defects
Degradation
Hafnium oxide
Low temperature
MOSFETs
physical modeling
Quantum mechanics
Silicon dioxide
Stress
Stress measurement
Temperature
Thermal variables control
Threshold voltage
Trapping
title Efficient Modeling of Charge Trapping at Cryogenic Temperatures-Part II: Experimental
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A51%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Modeling%20of%20Charge%20Trapping%20at%20Cryogenic%20Temperatures-Part%20II:%20Experimental&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Michl,%20Jakob&rft.date=2021-12-01&rft.volume=68&rft.issue=12&rft.spage=6372&rft.epage=6378&rft.pages=6372-6378&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2021.3117740&rft_dat=%3Cproquest_cross%3E2604924453%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-77fcc710a0037c18feb72985b781627e15e7ec3f32f367d4076393d4d81a0f3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2604924453&rft_id=info:pmid/&rft_ieee_id=9580748&rfr_iscdi=true