Loading…

Boosting Data-Driven Evolutionary Algorithm With Localized Data Generation

By efficiently building and exploiting surrogates, data-driven evolutionary algorithms (DDEAs) can be very helpful in solving expensive and computationally intensive problems. However, they still often suffer from two difficulties. First, many existing methods for building a single ad hoc surrogate...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on evolutionary computation 2020-10, Vol.24 (5), p.923-937
Main Authors: Li, Jian-Yu, Zhan, Zhi-Hui, Wang, Chuan, Jin, Hu, Zhang, Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:By efficiently building and exploiting surrogates, data-driven evolutionary algorithms (DDEAs) can be very helpful in solving expensive and computationally intensive problems. However, they still often suffer from two difficulties. First, many existing methods for building a single ad hoc surrogate are suitable for some special problems but may not work well on some other problems. Second, the optimization accuracy of DDEAs deteriorates if available data are not enough for building accurate surrogates, which is common in expensive optimization problems. To this end, this article proposes a novel DDEA with two efficient components. First, a boosting strategy (BS) is proposed for self-aware model managements, which can iteratively build and combine surrogates to obtain suitable surrogate models for different problems. Second, a localized data generation (LDG) method is proposed to generate synthetic data to alleviate data shortage and increase data quantity, which is achieved by approximating fitness through data positions. By integrating the BS and the LDG, the BDDEA-LDG algorithm is able to improve model accuracy and data quantity at the same time automatically according to the problems at hand. Besides, a tradeoff is empirically considered to strike a better balance between the effectiveness of surrogates and the time cost for building them. The experimental results show that the proposed BDDEA-LDG algorithm can generally outperform both traditional methods without surrogates and other state-of-the-art DDEA son widely used benchmarks and an arterial traffic signal timing real-world optimization problem. Furthermore, the proposed BDDEA-LDG algorithm can use only about 2% computational budgets of traditional methods for producing competitive results.
ISSN:1089-778X
1941-0026
DOI:10.1109/TEVC.2020.2979740