Loading…
Discrete Interval Type 2 Fuzzy System Models Using Uncertainty in Learning Parameters
Fuzzy system modeling (FSM) is one of the most prominent tools that can be used to identify the behavior of highly nonlinear systems with uncertainty. Conventional FSM techniques utilize type 1 fuzzy sets in order to capture the uncertainty in the system. However, since type 1 fuzzy sets express the...
Saved in:
Published in: | IEEE transactions on fuzzy systems 2007-02, Vol.15 (1), p.90-106 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fuzzy system modeling (FSM) is one of the most prominent tools that can be used to identify the behavior of highly nonlinear systems with uncertainty. Conventional FSM techniques utilize type 1 fuzzy sets in order to capture the uncertainty in the system. However, since type 1 fuzzy sets express the belongingness of a crisp value x' of a base variable x in a fuzzy set A by a crisp membership value mu A (x'), they cannot fully capture the uncertainties due to imprecision in identifying membership functions. Higher types of fuzzy sets can be a remedy to address this issue. Since, the computational complexity of operations on fuzzy sets are increasing with the increasing type of the fuzzy set, the use of type 2 fuzzy sets and linguistic logical connectives drew a considerable amount of attention in the realm of fuzzy system modeling in the last two decades. In this paper, we propose a black-box methodology that can identify robust type 2 Takagi-Sugeno, Mizumoto and Linguistic fuzzy system models with high predictive power. One of the essential problems of type 2 fuzzy system models is computational complexity. In order to remedy this problem, discrete interval valued type 2 fuzzy system models are proposed with type reduction. In the proposed fuzzy system modeling methods, fuzzy C-means (FCM) clustering algorithm is used in order to identify the system structure. The proposed discrete interval valued type 2 fuzzy system models are generated by a learning parameter of FCM, known as the level of membership, and its variation over a specific set of values which generate the uncertainty associated with the system structure |
---|---|
ISSN: | 1063-6706 1941-0034 |
DOI: | 10.1109/TFUZZ.2006.889765 |