Loading…

AIRS radiance validation over ocean from sea surface temperature measurements

Demonstrates the accuracy of methods and in situ data for early validation of calibrated Earth scene radiances measured by the Atmospheric InfraRed Sounder (AIRS) on the Aqua spacecraft. We describe an approach for validation that relies on comparisons of AIRS radiances with drifting buoy measuremen...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2003-02, Vol.41 (2), p.432-441
Main Authors: Hagan, D.E., Minnett, P.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c516t-8067603b6798f0940f9f3e0cdabf9e90fd7f91ac552b76747a6a3b2f426425df3
cites cdi_FETCH-LOGICAL-c516t-8067603b6798f0940f9f3e0cdabf9e90fd7f91ac552b76747a6a3b2f426425df3
container_end_page 441
container_issue 2
container_start_page 432
container_title IEEE transactions on geoscience and remote sensing
container_volume 41
creator Hagan, D.E.
Minnett, P.J.
description Demonstrates the accuracy of methods and in situ data for early validation of calibrated Earth scene radiances measured by the Atmospheric InfraRed Sounder (AIRS) on the Aqua spacecraft. We describe an approach for validation that relies on comparisons of AIRS radiances with drifting buoy measurements, ship radiometric observations and mapped sea surface temperature products during the first six months after launch. The focus of the validation is on AIRS channel radiances in narrow spectral window regions located between 800-1250 cm/sup -1/ and between 2500 and 2700 cm/sup -1/. Simulated AIRS brightness temperatures are compared to in situ and satellite-based observations of sea surface temperature colocated in time and space, to demonstrate accuracies that can be achieved in clear atmospheres. An error budget, derived from single channel, single footprint matchups, indicates AIRS can be validated to better than 1% in absolute radiance (equivalent to 0.5 K in brightness temperature, at 300 K and 938 cm/sup -1/) during early mission operations. The eventual goal is to validate instrument radiances close to the demonstrated prelaunch calibration accuracy of about 0.4% (equivalent to 0.2 K in brightness temperature, at 300 K and 938 cm/sup -1/).
doi_str_mv 10.1109/TGRS.2002.808316
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2002_808316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1196059</ieee_id><sourcerecordid>1671274484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-8067603b6798f0940f9f3e0cdabf9e90fd7f91ac552b76747a6a3b2f426425df3</originalsourceid><addsrcrecordid>eNqF0stL5EAQB-BGFBwfd8FL8KB7yVjV7z6K-AJF8HEOPUk1RCbJ2J0M-N_bwyws7EFPBcVXBVX8GDtBmCOCu3y7e3mdcwA-t2AF6h02Q6VsCVrKXTYDdLrk1vF9dpDSBwBKhWbGnq4eXl6L6JvW9zUVa79sGz-2Q18Ma4rFUJPvixCHrkjkizTF4DMbqVtR9OMUqejI5zZ11I_piO0Fv0x0_Lcesvfbm7fr-_Lx-e7h-uqxrBXqsbSgjQax0MbZAE5CcEEQ1I1fBEcOQmOCQ18rxRdGG2m89mLBg-RactUEccgutntXcficKI1V16aalkvf0zClyloBaFG7LM9_lNyBUAb579Bm5lD9Do3L-xAy_PMjRJ2dkdLKTM_-ox_DFPv8wnyKFMCF2JwCW1THIaVIoVrFtvPxq0KoNhmoNhmoNhmothnII6fbkZaI_vGcBVBOfAMbUKs8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884302339</pqid></control><display><type>article</type><title>AIRS radiance validation over ocean from sea surface temperature measurements</title><source>IEEE Xplore (Online service)</source><creator>Hagan, D.E. ; Minnett, P.J.</creator><creatorcontrib>Hagan, D.E. ; Minnett, P.J.</creatorcontrib><description>Demonstrates the accuracy of methods and in situ data for early validation of calibrated Earth scene radiances measured by the Atmospheric InfraRed Sounder (AIRS) on the Aqua spacecraft. We describe an approach for validation that relies on comparisons of AIRS radiances with drifting buoy measurements, ship radiometric observations and mapped sea surface temperature products during the first six months after launch. The focus of the validation is on AIRS channel radiances in narrow spectral window regions located between 800-1250 cm/sup -1/ and between 2500 and 2700 cm/sup -1/. Simulated AIRS brightness temperatures are compared to in situ and satellite-based observations of sea surface temperature colocated in time and space, to demonstrate accuracies that can be achieved in clear atmospheres. An error budget, derived from single channel, single footprint matchups, indicates AIRS can be validated to better than 1% in absolute radiance (equivalent to 0.5 K in brightness temperature, at 300 K and 938 cm/sup -1/) during early mission operations. The eventual goal is to validate instrument radiances close to the demonstrated prelaunch calibration accuracy of about 0.4% (equivalent to 0.2 K in brightness temperature, at 300 K and 938 cm/sup -1/).</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2002.808316</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>AQUA spacecraft ; Atmospheric infrared sounder ; Atmospheric measurements ; Brightness temperature ; Calibration ; Channels ; Earth ; Equivalence ; Layout ; Marine vehicles ; Meteorological satellites ; Meteorology ; Ocean temperature ; Radiance ; Sea measurements ; Sea surface ; Sea surface temperature ; Space vehicles ; Temperature ; Temperature measurement</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2003-02, Vol.41 (2), p.432-441</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-8067603b6798f0940f9f3e0cdabf9e90fd7f91ac552b76747a6a3b2f426425df3</citedby><cites>FETCH-LOGICAL-c516t-8067603b6798f0940f9f3e0cdabf9e90fd7f91ac552b76747a6a3b2f426425df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1196059$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Hagan, D.E.</creatorcontrib><creatorcontrib>Minnett, P.J.</creatorcontrib><title>AIRS radiance validation over ocean from sea surface temperature measurements</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Demonstrates the accuracy of methods and in situ data for early validation of calibrated Earth scene radiances measured by the Atmospheric InfraRed Sounder (AIRS) on the Aqua spacecraft. We describe an approach for validation that relies on comparisons of AIRS radiances with drifting buoy measurements, ship radiometric observations and mapped sea surface temperature products during the first six months after launch. The focus of the validation is on AIRS channel radiances in narrow spectral window regions located between 800-1250 cm/sup -1/ and between 2500 and 2700 cm/sup -1/. Simulated AIRS brightness temperatures are compared to in situ and satellite-based observations of sea surface temperature colocated in time and space, to demonstrate accuracies that can be achieved in clear atmospheres. An error budget, derived from single channel, single footprint matchups, indicates AIRS can be validated to better than 1% in absolute radiance (equivalent to 0.5 K in brightness temperature, at 300 K and 938 cm/sup -1/) during early mission operations. The eventual goal is to validate instrument radiances close to the demonstrated prelaunch calibration accuracy of about 0.4% (equivalent to 0.2 K in brightness temperature, at 300 K and 938 cm/sup -1/).</description><subject>AQUA spacecraft</subject><subject>Atmospheric infrared sounder</subject><subject>Atmospheric measurements</subject><subject>Brightness temperature</subject><subject>Calibration</subject><subject>Channels</subject><subject>Earth</subject><subject>Equivalence</subject><subject>Layout</subject><subject>Marine vehicles</subject><subject>Meteorological satellites</subject><subject>Meteorology</subject><subject>Ocean temperature</subject><subject>Radiance</subject><subject>Sea measurements</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Space vehicles</subject><subject>Temperature</subject><subject>Temperature measurement</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqF0stL5EAQB-BGFBwfd8FL8KB7yVjV7z6K-AJF8HEOPUk1RCbJ2J0M-N_bwyws7EFPBcVXBVX8GDtBmCOCu3y7e3mdcwA-t2AF6h02Q6VsCVrKXTYDdLrk1vF9dpDSBwBKhWbGnq4eXl6L6JvW9zUVa79sGz-2Q18Ma4rFUJPvixCHrkjkizTF4DMbqVtR9OMUqejI5zZ11I_piO0Fv0x0_Lcesvfbm7fr-_Lx-e7h-uqxrBXqsbSgjQax0MbZAE5CcEEQ1I1fBEcOQmOCQ18rxRdGG2m89mLBg-RactUEccgutntXcficKI1V16aalkvf0zClyloBaFG7LM9_lNyBUAb579Bm5lD9Do3L-xAy_PMjRJ2dkdLKTM_-ox_DFPv8wnyKFMCF2JwCW1THIaVIoVrFtvPxq0KoNhmoNhmoNhmothnII6fbkZaI_vGcBVBOfAMbUKs8</recordid><startdate>20030201</startdate><enddate>20030201</enddate><creator>Hagan, D.E.</creator><creator>Minnett, P.J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20030201</creationdate><title>AIRS radiance validation over ocean from sea surface temperature measurements</title><author>Hagan, D.E. ; Minnett, P.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-8067603b6798f0940f9f3e0cdabf9e90fd7f91ac552b76747a6a3b2f426425df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>AQUA spacecraft</topic><topic>Atmospheric infrared sounder</topic><topic>Atmospheric measurements</topic><topic>Brightness temperature</topic><topic>Calibration</topic><topic>Channels</topic><topic>Earth</topic><topic>Equivalence</topic><topic>Layout</topic><topic>Marine vehicles</topic><topic>Meteorological satellites</topic><topic>Meteorology</topic><topic>Ocean temperature</topic><topic>Radiance</topic><topic>Sea measurements</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Space vehicles</topic><topic>Temperature</topic><topic>Temperature measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hagan, D.E.</creatorcontrib><creatorcontrib>Minnett, P.J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hagan, D.E.</au><au>Minnett, P.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AIRS radiance validation over ocean from sea surface temperature measurements</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2003-02-01</date><risdate>2003</risdate><volume>41</volume><issue>2</issue><spage>432</spage><epage>441</epage><pages>432-441</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Demonstrates the accuracy of methods and in situ data for early validation of calibrated Earth scene radiances measured by the Atmospheric InfraRed Sounder (AIRS) on the Aqua spacecraft. We describe an approach for validation that relies on comparisons of AIRS radiances with drifting buoy measurements, ship radiometric observations and mapped sea surface temperature products during the first six months after launch. The focus of the validation is on AIRS channel radiances in narrow spectral window regions located between 800-1250 cm/sup -1/ and between 2500 and 2700 cm/sup -1/. Simulated AIRS brightness temperatures are compared to in situ and satellite-based observations of sea surface temperature colocated in time and space, to demonstrate accuracies that can be achieved in clear atmospheres. An error budget, derived from single channel, single footprint matchups, indicates AIRS can be validated to better than 1% in absolute radiance (equivalent to 0.5 K in brightness temperature, at 300 K and 938 cm/sup -1/) during early mission operations. The eventual goal is to validate instrument radiances close to the demonstrated prelaunch calibration accuracy of about 0.4% (equivalent to 0.2 K in brightness temperature, at 300 K and 938 cm/sup -1/).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2002.808316</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2003-02, Vol.41 (2), p.432-441
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2002_808316
source IEEE Xplore (Online service)
subjects AQUA spacecraft
Atmospheric infrared sounder
Atmospheric measurements
Brightness temperature
Calibration
Channels
Earth
Equivalence
Layout
Marine vehicles
Meteorological satellites
Meteorology
Ocean temperature
Radiance
Sea measurements
Sea surface
Sea surface temperature
Space vehicles
Temperature
Temperature measurement
title AIRS radiance validation over ocean from sea surface temperature measurements
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A33%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AIRS%20radiance%20validation%20over%20ocean%20from%20sea%20surface%20temperature%20measurements&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Hagan,%20D.E.&rft.date=2003-02-01&rft.volume=41&rft.issue=2&rft.spage=432&rft.epage=441&rft.pages=432-441&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2002.808316&rft_dat=%3Cproquest_cross%3E1671274484%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c516t-8067603b6798f0940f9f3e0cdabf9e90fd7f91ac552b76747a6a3b2f426425df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884302339&rft_id=info:pmid/&rft_ieee_id=1196059&rfr_iscdi=true