Loading…

A combined method to model microwave scattering from a forest medium

A novel method, which employs both a matrix doubling algorithm and the first-order solution of a radiative transfer (RT) equation for modeling microwave backscattering from forest, is presented in the paper. The method is based on the assumption that a forest canopy can be divided into a number of d...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2006-04, Vol.44 (4), p.815-824
Main Authors: Jinyang Du, Jiancheng Shi, Tjuatja, S., Kun Shan Chen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A novel method, which employs both a matrix doubling algorithm and the first-order solution of a radiative transfer (RT) equation for modeling microwave backscattering from forest, is presented in the paper. The method is based on the assumption that a forest canopy can be divided into a number of distinct horizontal vegetation layers over a dielectric half-space rough surface. The scattering phase matrix of each layer is calculated by either matrix doubling to account for the multiple-scattering effect or first-order solution of an RT equation, depending on the scattering characteristics of the layer. The first-order solution of the RT equation is used for the trunk layer while the matrix doubling technique is applied to both the crown layer and understory. The advanced integral equation model and reflectivity matrix are used to calculate the noncoherent and coherent surface boundary conditions. Comparisons between model predictions and field measurements on radar backscattering coefficients for a walnut orchard showed a good agreement at both L-band and X-band and for all three polarizations. Comparative analyses of model predictions for backscattering from a forest medium calculated using the combined model, first-order RT model, and the standard matrix doubling model were also presented. Understory effects, that can significantly change the weight of each scattering mechanism, were also evaluated by using the combined method.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2006.872289